
1

1 Introduction .. 3

2 The Basics of Serial Bus Systems.. 4

2.1 Applications and Definitions .. 4

2.2 Basic Functions of Bus Systems ... 5

2.2.1 Access Techniques ... 6

2.2.2 Synchronization of Participants... 7

2.2.3 Error Processing ... 7

2.3 The OSI Reference Model .. 8

3 Overview of the M-Bus .. 11

3.1 Requirements of a Bus System for Consumer Utility Meters 11

3.2 The M-Bus in the OSI Model.. 11

4 Physical Layer .. 14

4.1 Principles of Operation ... 14

4.2 Specifications for Bus Installations... 16

4.3 Specifications of the Repeaters ... 17

4.4 Slave Design ... 17

5 Data Link Layer ... 21

5.1 Transmission Parameters .. 21

5.2 Telegram Format... 22

5.3 Meaning of the Fields ... 23

5.4 Communication Process.. 25

5.5 FCB- and FCV-Bits and Addressing... 27

5.5.1 Applications of the FCB-mechanism .. 27

5.5.2 Implementation aspects for primary addressing .. 28

6 Application Layer... 31

6.1 CI-Field ... 31

6.2 Fixed Data Structure ... 34

6.3 Variable Data Structure... 36

6.3.1 Fixed Data Header .. 36

6.3.2 Variable Data Blocks.. 37

6.3.3 Manufacturer Specific Data Block ... 43

6.4 Configuring Slaves.. 45

6.4.1 Switching Baudrate... 45

6.4.2 Writing Data to a Slave .. 46

2

6.4.3 Configuring Data Output .. 48

6.5 Generalized Object Layer.. 51

6.6 Application Layer Status... 53

6.7 Special Slave Features .. 55

6.7.1 Auto Speed Detect .. 55

6.7.2 Slave Collision Detect .. 56

6.7.3 Use of the Fabrication Number .. 57

6.7.4 Hex-Codes $A-$F in BCD-Data Fields... 57

7 Network Layer.. 63

7.1 Selection and Secondary Addressing .. 63

7.3 FCB-Bit and Selection .. 64

7.4 Searching for Installed Slaves.. 65

7.4 Generalized Selection Procedure .. 69

8 Appendix ... 70

8.1 Alarm Protocol.. 70

8.2 Coding of Data Records.. 71

8.3 Tables for Fixed Data Structure .. 74

8.3.1 Measured Medium Fixed Structure .. 74

8.3.2 Table of Physical Units... 75

8.4 Tables for Variable Data Structure ... 76

8.4.1 Measured Medium Variable Structure ... 76

8.4.2 Data Field Codes .. 77

8.4.3 Codes for Value Information Field (VIF)... 78

8.4.4 Extension of primary VIF-Codes.. 80

8.4.5 Codes for Value Information Field Extension (VIFE) 84

8.5 References... 88

3

1 Introduction

This document, which is based on references [11] and [12], gives detailed and actual

information about the M-Bus, which is a low cost home electronic system (HES).

This documentation about the M-Bus is published by the M-Bus Usergroup, which is an

international organization of users and producers of M-Bus devices. The usergroup meets

several times a year to discuss problems and developments in hardware and software.

Recommendations, agreements, examples and explanations are included in this paper as well

as parts of the standards itself. Among other things the actual version of this document in

Winword format can be downloaded from the M-Bus Mailbox.

M-Bus Usergroup:

Prof. Dr. Horst Ziegler

Fachbereich Physik

Universität-GH Paderborn

Warburgerstr. 100

Germany 33098 Paderborn

Phone: +49 5251 / 602735

WWW:

http://fb6www.uni-paderborn.de/M-Bus/

M-Bus Mailbox:

Phone: +49 5251 / 603830

Parameter: 300..14400 bps, 8N1

Sysop: Carsten Bories, Phone 602750

The M-Bus (Meter Bus) was developed to fill the need for a system for the networking and

remote reading of utility meters, for example to measure the consumption of gas or water in

the home. This bus fulfills the special requirements of remotely powered or battery driven

systems, including consumer utility meters. When interrogated, the meters deliver the data

they have collected to a common master, which can, for example, be a hand-held computer,

connected at periodic intervals to read all utility meters of a building. An alternative method

of collecting data centrally is to transmit meter readings via a modem.

Other possible applications in home electronic systems for the M-Bus are alarm systems,

flexible illumination installations and heating controlling.

REMARKS:

♣ Text parts or topics marked with this symbol are new or changed information since last

version 4.7.1 of this document.

http://fb6www.uni-paderborn.de/M-Bus/

4 2 The Basics of Serial Bus Systems

2 The Basics of Serial Bus Systems

2.1 Applications and Definitions

The methods by which data processing systems communicate with each other are classified

according to the distances involved. With world-wide networks the term used is Global Area

Networks (GAN), whereas networks covering continents or large land masses are known as

Wide Area Networks (WAN); Local Area Networks (LAN) are concerned with distances up

to a few kilometers, and are limited to specific geographical areas, such as laboratories, office

buildings and company premises. Such local networks are used, for example, to link

terminals, computers, measuring equipment and process automation modules with one

another.

In the majority of local networks, one or other of the following methods (topologies) are used

to link the components in a system:

• Star Topology

Each component is linked to a central processor unit with an individual transmission line.

The equipment can transmit to the central unit either sequentially or simultaneously. One

disadvantage of this arrangement is the increased requirement for cabling.

• Ring Topology

In this case, the components are connected to one another in a ring, and the data are

transferred from point to point. This topology has the disadvantage that, should a single

equipment fail, the complete network will be out of action.

• Bus Topology

The components are connected together with a common transmission line, with the result

that at one instant only one equipment can transmit data. This topology is very cost-

effective, it will not be disturbed if one of the components fails, and it allows the

transmission of data to all components (Broadcasting) or to specific groups in the system

(Multicasting).

Star Ring Bus

Fig. 1 Network Topologies

2.2 Basic Functions of Bus Systems 5

A serial bus can be defined as a transmission path over which the participants transmit their

data serially (i.e. bit after bit), sequentially in time and using a common medium. In contrast,

in parallel bus systems the individual bits which form a character are transmitted

simultaneously by a certain number of data lines. This results in increased costs for cable and

connectors; the transmission time is shorter than with a serial bus.

2.2 Basic Functions of Bus Systems

The following diagram is intended to provide an overall view of the various forms of serial

bus systems:

Serial Bus

Time Division Multiplex Frequency Multiplex

Synchronous Assynchronous One Subscriber Several Subscribers
Transmission per Channel per Channel

 with central
control

Controlled Bus Uncontrolled Bus
Access Access

Central Bus Decentral Bus Carrier Sense Carrier sense
Allocation Allocation with collision recognition

Transmission

Fig. 2 Classification of Serial Bus Systems According to Transmission and Access

Techniques [1]

The first subdivision can be made according to the multiplex technique which is used. With

frequency multiplex, the frequency spectrum of the transmission medium is divided into

frequency bands, each representing a channel. Each participant is then allocated a channel. In

the next section, the kind of synchronization and access techniques which are used will be

described in order to classify serial bus systems using time division multiplex.

6 2 The Basics of Serial Bus Systems

2.2.1 Access Techniques

Since in bus systems the transmission medium is used by all participants together, account

must be taken of their various transmission requirements. The methods used by participants

who want to transmit over the bus are known as access techniques. These techniques must

ensure that several stations do not transmit simultaneously, and so cause bus conflicts or

collisions, and that each participant can transmit for at least a certain minimum time. The

sharing of the bus among stations who want to transmit is implemented with an allocation

logic system.

With central allocation logic, the central bus controller receives a request to use the bus and

then takes the decision as to whether, and if so when, the user can occupy the bus. For this

purpose various methods are used to register the bus occupation request:

• direct registration by means of an individual branch line to each equipment

• periodical interrogation (polling) of the participants as to their transmission needs

• requests sent on a common line with identification of the sender

• allocation of the bus according to a predetermined time frame without taking account of

individual requirements

The advantage of central allocation logic is the reduced complexity which is required at

individual stations.

With decentralized allocation logic, each participant is provided with functions which allow

him to recognize whether the bus is already in use. There are various methods which can be

used to determine whether the bus is occupied:

• mutual interrogation of stations by means of a request line for each station

• periodical bus allocation, by passing "ownership" of the bus from station to station

• CSMA (Carrier Sense Multiple Access): The participants have the ability to check

whether the bus is transmitting data, and to transmit their own data if it is found to be free.

To avoid collisions, which could arise as a result of signal transit times, with certain bus

systems (e.g. Ethernet) the stations are able to use their own data on the bus to determine

whether there is a bus conflict. In such a case, the transmission will be interrupted and

repeated after an appropriate time interval.

2.2 Basic Functions of Bus Systems 7

A higher degree of logic complexity at each station is needed to implement decentralized

allocation logic, but this system also has the advantage that a fault in the central bus controller

will not result in a complete breakdown of the bus.

2.2.2 Synchronization of Participants

Synchronization is to be understood as the coordination in time of the communicating

participants, with regard to signal transmission and reception. The various methods of

synchronization can be classified into data transmission which is synchronous and that which

is asynchronous (see Figure 3).

With synchronous transmission, a stable clock signal is supplied either by the central station

or one of the communicating partners, which serves to measure transmission times. With

asynchronous transmission, a distinction must be made between techniques with and without

signal acknowledgment. Where there is signal acknowledgment (handshake), the sender

shows with a specific signal on the line that he has data to send, and waits for an

acknowledgment from the receiver. Techniques without acknowledgment use a transfer clock

on a special line for parallel bit transmission, or start and stop bits to frame a character for bit-

serial transmission.

Synchronization

Synchronous Transmission

(clock signal)

Without Acknowledgement
With Acknowledgement

(Handshake)

Start-Stop Bits

Asynchronous Transmission

Transfer Clock

Fig. 3 Classification of Synchronization Techniques

2.2.3 Error Processing

The reasons for transmission errors in bus systems are widely known. These include in

particular electromagnetic interference from outside, for example: inductive coupling at mains

frequencies; high-frequency interference as a result of sparking at the brushes of motors or

arcs of discharge lamps; capacitive coupling to other lines; or directly coupled currents from

ground loops as a result of multiple grounds.

8 2 The Basics of Serial Bus Systems

A bus system must ensure that transmission errors are recognized and corrected. For this

reason additional information is supplied with the data to be transmitted, which allows the

data to be checked on reception.

Particularly with asynchronous transmission, an additional parity bit is often transmitted with

each character. This parity bit is constructed so that the parity conditions (an even number of

ones, or an odd number of ones) are fulfilled. Another method is the creation of a block check

character from specific mathematical operations e.g. addition without carry (Check Sum),

which is derived from all the data. The receiving station can detect whether there have been

transmission errors by comparing the check character it has received with one which it has

calculated itself. The parity bit allows only the recognition of an odd number of faulty bits.

In order to correct errors the recipient sends an acknowledgment, which indicates that the

transmission has been either error free, or that there have been transmission errors. For the

same purpose the transmitter checks that the receiver acknowledges the reception of data in a

certain period of time. If the time limit is exceeded (Timeout), or if a transmission error has

been reported, then the sender repeats the transmission a predetermined number of times.

The Hamming Distance is used in order to specify the security of a character code; this is the

number of errors (minus one) which can be recognized for all cases.

2.3 The OSI Reference Model

The ISO-OSI reference model provides a basis for the development of standards for Open

Systems Interconnection (OSI). This model devised by the "International Organization for

Standardization" (ISO) is intended to ensure that information from systems made by various

manufacturers, and having different architecture, can be exchanged and interpreted in

accordance with standardized procedures.

This model arranges the communications functions in seven layers, each of which has a

virtual connection to the appropriate layer of the communicating partner. Only on the lowest

layer (Layer 1) is there a physical connection for exchanging signals. Each layer, with the

exception of Layer 1, obtains the necessary service from the layer below it. The OSI model

merely defines the servicing and functions of the layers, but not the technical realization (the

protocols) within the layers.

Two user programs can exchange information on Layer 7, if there is agreement between them

(i.e. there are protocols) on the following points [2]:

• the representation of information in Layer 6

• the flow of communications (contents and form) in Layer 5

• the completeness of the information and the security of transport in Layer 4

• the way information should be transferred through the network in Layer 3

2.3 The OSI Reference Model 9

• the security of transmission in Layer 2

• the physical medium in Layer 1

7 Application Layer

6 Presentation Layer Application Oriented Layers

5 Session Layer

4 Transport Layer

3 Network Layer Transport Oriented Layers

2 Data Link Layer

1 Physical Layer

Fig. 4 The Seven Layers of the OSI Model

The functions of the individual layers shown in Figure 4 will now be explained in more detail:

Physical Layer

The basic physical connection between the communicating partners takes place in this lowest

layer. The mechanical and electrical coupling to the transmission medium is determined here,

by specifying (among other things) the cable, the distances involved, the pinning of

connectors, and the way the bits are represented.

Data Link Layer

This layer is responsible for assuring that a reliably operating connection is made between two

participants. For this purpose the protocol of this layer determines the methods for protecting

transmissions, the telegram structure, methods of accessing the transmission medium and for

the synchronization and addressing of participants. By making use of the procedures described

in Section 2.2.3 it should be possible to identify and correct faults in the Data Link Layer.

Network Layer

The network layer undertakes the choice and implementation of the best transmission route in

a network between the communicating parties, and provides this service (Routing) to the

Transport Layer. This function is of particular significance when different networks need to be

connected by means of Gateways.

Transport Layer

The transport layer represents the boundary between the application oriented layers 5 to 7, and

the transport oriented layers 1 to 4. Its job includes guiding the information through the

network, controlling the flow of information and the grouping into individual packets.

10 2 The Basics of Serial Bus Systems

Session Layer

The session layer provides procedures for the opening, the orderly progressing, and the

termination of a communication "session". In this is included also the control of the dialogue

between systems: that is, the determination of their respective transmission prerogatives.

Presentation Layer

The data of the application are converted in the presentation layer into a data format which the

receiving application can interpret. This layer thus implements the matching of data formats

and the conversion of codes.

Application Layer

This top layer represents the interface between the open system and the user. It offers the user

or his program a service allowing him to work easily with the system. Application programs

which need to be developed can thus access the functions of the open system via the protocol

of the application layer.

In the following diagram the route to be followed by data from the transmitting to the

receiving application can be seen, indicated by the continuous arrows. At the transmitting side

information (Overhead) which is necessary for transmission and processing is added to the

actual data in each layer; at the receiving side this information is removed again in the reverse

order after processing.

Level 7 Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Transmitter Receiver

Fig. 5 Data Transmission in Accordance with the OSI Model

3.1 Requirements of a Bus System for Consumer Utility Meters 11

3 Overview of the M-Bus

3.1 Requirements of a Bus System for Consumer Utility Meters

Of the various possible topologies which might be considered for reliable and cost-effective

networking consumer utility meters, only the bus topology (see Section 2.1) is in fact suitable.

The requirements which are made by meters on such a bus system will now be explained.

The most important requirement is the interconnection of many devices (several hundred)

over long distances - up to several kilometers. Since the data sent by the meters are used for

end user billing, a high degree of transmission integrity is required for the bus. On the other

hand it is possible to dispense with high speed of transmission, since usually only a relatively

small amount of information must be transferred. To ensure this high degree of transmission

integrity, the bus must be exceptionally insensitive to external interference, as a result of

capacitive or inductive coupling. In order to avoid ground loops, the slave should be

electrically isolated.

A further requirement for the bus is low cost for the complete system. The transmission

medium which is used should therefore not require shielding, and the cost of individual

meters can be minimized by using as few components as possible and by remotely powering

the slaves from the bus. In addition the costs of installing and servicing the system must be

taken into account: These can be reduced by incorporating protection against reversed

polarity, and making provision for the connection of additional facilities (Life Insert) during

operation of the bus system.

3.2 The M-Bus in the OSI Model

Since no bus system was available which met the requirements detailed in Section 3.11, the

Meter-Bus (M-Bus) was developed by Professor Dr. Horst Ziegler of the University of

Paderborn in cooperation with Texas Instruments Deutschland GmbH and Techem GmbH.

The concept was based on the ISO-OSI Reference Model, in order to realize an open system

which could utilize almost any desired protocol.

Since the M-Bus is not a network, and therefore does not - among other things - need a

transport or session layer, the levels four to six of the OSI model are empty. Therefore only

the physical, the data link , the network and the application layer are provided with functions.

1see Reference [3], Chapter 2.1, Field Bus Systems

12 3 Overview of the M-Bus

Layer Functions Standard Chapter

Application
Data structures, data types,

actions EN1434-3 6

Presentation empty

Session empty

Transport empty

Network extended addressing (optional) - 7

Data Link
transmission parameters, telegram

formats, addressing, data integrity IEC 870 5

Physical
cable, bit representation, bus extensions,

topology, electrical specifications. M-Bus 4

Fig. 6 The M-Bus layers in the OSI-Model

Because changing of parameters like baudrate and address by higher layers is not allowed in

the ISO-OSI-Model, a Management Layer beside and above the seven OSI-Layers is

defined:

MANAGEMENT LAYER

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer (if address = 253) Address 253 / Enable Disable CI=$52/$56

Data Link Layer

Physical Layer Address 254 (255)

Fig. 7 Management-Layer of the M-Bus

3.2 The M-Bus in the OSI Model 13

So the address 254 and perhaps 255 are reserved for managing the physical layer and the

address 253 (selection) for network layer (see chapter 7), which is only used in certain cases.

With this new layer we can directly manage each OSI-layer to implement features, which do

not conform to the OSI-Model.

14 4 Physical Layer

4 Physical Layer

More and detailed informations about the specifications of the physical layer are listed in the

document 'WG4N85R2.DOC' ♣.

4.1 Principles of Operation

The M-Bus is a hierarchical system, with communication controlled by a master (Central

Allocation Logic). The M-Bus consists of the master, a number of slaves (end-equipment

meters) and a two-wire connecting cable: see Figure 8. The slaves are connected in parallel to

the transmission medium - the connecting cable.

 Master

Slave 2 Slave 3Slave 1

M-Bus

Fig. 8 Block diagram showing principle of the M-Bus System

In order to realize an extensive bus network with low cost for the transmission medium, a

two-wire cable was used together with serial data transfer. In order to allow remote powering

of the slaves, the bits on the bus are represented as follows:

The transfer of bits from master to slave is accomplished by means of voltage level shifts. A

logical "1" (Mark) corresponds to a nominal voltage of +36 V at the output of the bus driver

(repeater), which is a part of the master; when a logical "0" (Space) is sent, the repeater

reduces the bus voltage by 12 V to a nominal +24 V at its output.

Bits sent in the direction from slave to master are coded by modulating the current

consumption of the slave. A logical "1" is represented by a constant (versus voltage,

temperature and time) current of up to 1.5 mA, and a logical "0" (Space) by an increased

current drain requirement by the slave of additional 11-20 mA. The mark state current can be

used to power the interface and possibly the meter or sensor itself.

4.1 Principles of Operation 15

Ispace = Imark

Imark < 1,5mA

+ (11-20) mA

Vmark = 36 V

Vspace = 24 V

Master transmits to Slave

Bus Voltage at Repeater

Current Consumption of a Slave

Time t

Time t

Slave transmits to Master

Mark
("1")

Space
("0")

Mark
("1")

Space
("0")

Fig. 9 Representation of bits on the M-Bus

The transmission of a space by a slave results in a slight reduction in the bus voltage at the

repeater due to output impedance, as can be seen in Figure 9.

The quiescent state on the bus is a logical "1" (Mark), i.e. the bus voltage is 36 V at the

repeater, and the slaves require a maximum constant quiescent current of 1.5 mA each.

When no slave is sending a space, a constant current will be drained from the repeater which

is driving the bus. As a result of this, and also the resistance of the cable, the actual Mark

voltage at the slaves will be less than +36 V, depending on the distance between the slave and

the repeater and on the total quiescent current of the slaves. The slave must therefore not

detect absolute voltage levels, but instead for a space detect a voltage reduction of 12 V. The

repeater must adjust itself to the quiescent current level (Mark), and interpret an increase of

the bus current of 11-20 mA as representing a space. This can be realized with acceptable

complexity only when the mark state is defined as 36 V. This means that at any instant,

transmission is possible in only one direction - either from master to slave, or slave to master

(Half Duplex).

As a result of transmission in the master-slave direction with a voltage change of 12 V, and in

the answering direction with at least 11 mA, besides remote powering of slaves a high degree

of insensitivity to external interference has been achieved.

16 4 Physical Layer

4.2 Specifications for Bus Installations

Segmentation

An M-Bus system can consist of several so-called zones, each having its own group address,

and interconnected via zone controllers and higher level networks. Each zone consists of

segments, which in turn are connected by remote repeaters. Normally however, an M-Bus

system consists of only a single segment, which is connected via a local repeater to a Personal

Computer (PC) acting as master. Such local repeaters convert the M-Bus signals into signals

for the RS232 interface. From now on, the local repeater will simply be termed the "repeater",

and the combination of PC and local repeater termed the "master".

Cable

A two-wire standard telephone cable (JYStY N*2*0.8 mm) is used as the transmission

medium for the M-Bus. The maximum distance between a slave and the repeater is 350 m;

this length corresponds to a cable resistance of up to 29 Ω. This distance applies for the

standard configuration having Baud rates between 300 and 9600 Baud, and a maximum of

250 slaves. The maximum distance can be increased by limiting the Baud rate and using fewer

slaves, but the bus voltage in the Space state must at no point in a segment fall below 12 V,

because of the remote powering of the slaves. In the standard configuration the total cable

length should not exceed 1000 m, in order to meet the requirement of a maximum cable

capacitance of 180 nF.

Plug

There is so far no standard or recommendation for a M-Bus plug to connect the meters to the

bus system, but the Usergroup investigates in defining a proper connector. Three different

plugs have to be defined for the connector at a) the installation mode b) meter to fixed

installation and c) meter to handheld connection.

4.3 Specifications of the Repeaters 17

4.3 Specifications of the Repeaters

See chapter 'Electrical Requirements Master' in the document 'WG4N85R2.DOC' ♣.

4.4 Slave Design

The requirements for slaves are listed in the paper 'WG4N85R2.DOC' ♣. The following

characteristics are part of it:

• Transmission Characteristics

The slaves are designed to be constant current sinks with two different currents, whereby

the current which is "sunk" must not vary by more than 0.2 % for 1 V voltage change on

the bus. In order to transmit a Mark, a so-called Unit Load consisting of a constant current

of 1.5 mA maximum is specified. If the slave needs more current, an appropriate number

of additional Unit Loads must be used. When sending a Space, the slave increases its

current consumption by 11-20 mA. In order to receive data, the slave detects the

maximum value Vmax of the bus voltage, which can be between 21 V and 42 V. With a

bus voltage of more than Vmax - 5.5 V, a Mark should be registered, and with a voltage of

less than Vmax - 8,2 V, a Space should be registered.

• Remote Powering

The bus interface - that is, the interface between the slave and the bus system - must take

the current it needs from the bus system. If possible, the complete slave should be fed

from the bus; in this case, should the bus fail, it must automatically switch over to battery

operation, or the significant data must be saved. If the slaves are operated only from

batteries, it is necessary that a battery life of several years should be attained, in order to

reduce maintenance costs.

• Protective Measures

The bus interfaces of the slaves are polarity independent: that is, the two bus lines can be

interchanged without affecting the operation of the slaves. Besides protection aspects, this

also results in simplified installation of the bus system. In order to maintain correct

operation of the bus in case of a short circuit of one of the slaves as metioned before these

must have a protection resistor with a nominal value of (430±10)Ω in their bus lines. This

limits the current in the case of a short circuit to a maximum of 100 mA (42 V / 420 Ω),

and reduces the energy converted into heat in the bus interface.

18 4 Physical Layer

M-Bus Transceiver TSS721

In order to meet the requirements for the slaves mentioned above, an IC was developed by

Texas Instruments Deutschland GmbH, namely the Transceiver (i.e. Transmitter and

Receiver) TSS721. The use of the TSS721 in M-Bus slaves as the interface to the bus reduces

the number of components needed, and therefore the cost of slaves. Apart from the

transmission and reception of data in accordance with the M-Bus specification, this IC also

provides translation from and to the operating voltage of the microprocessor to which it is

connected, in order to be able to communicate with it. The communication can take place at

baudrates from 300 to 9600 Baud. Additional features include integrated protection against

reversed polarity, a constant 3.3V power supply for the microprocessor, and the prompt

indication of failure of the bus voltage.

By referring to Figure 10, the individual functions of the TSS721 will now be explained in

more detail:

Fig. 10 Block Diagram of the Transceiver TSS721 [4]

• Reversed Polarity Protection

The bus lines are first taken to the bridge rectifier BR via the external protection resistors

Rv (in this case, of 215Ω in each line), in order to provide reversed polarity protection.

This rectified voltage can be accessed at the VB (Voltage Bus) pin. In order the avoid a

reduction of the voltage as a result of rectification, when reversed polarity protection can

4.4 Slave Design 19

be dispensed with, the bus voltage may also be connected directly between the VB and

GND pins.

• Reception

The comparator circuit TC3 is provided to detect signals from the master; it adjusts itself

to the Mark voltage level with the help of the capacitor SC. This capacitor is charged up to

8.6 V under the Mark voltage when in the Mark state, and discharged during the Space

state. The ratio of charge to discharge current is more than 30 to make any kind of UART

protocol work indepedently of the data contents. The voltage across the capacitor SC

results in dynamic matching of the comparator to the Mark level. From the relationship

between the charging and discharging current results the requirement in the transmission

protocol that at least every eleventh bit (with adequate certainty) must be a logical 1 - that

is, a Mark. This guarantees that SC is not discharged too much, and that matching to the

Mark voltage level is always effective. With a voltage of 7.9 V under the Mark level, the

TSS721 gives a logical 0 to the TX pin (0 V) and to the inverted TXI pin (Supply

Voltage).

• Transmission

The signal from the microprocessor applied to the RX Pin or RXI Pin (inverted) is

converted into a current by TC4 and the constant current source CS3. When there is a

Mark at the inputs (RX or RXI), the quiescent current is taken from the bus with the help

of the constant current source. If however the processor transmits a Space, then TC4

switches on the constant current source CS3, and consequently the additional pulse

current. The quiescent current can be adjusted over a certain range with the resistor Ridd,

and the pulse current adjusted with Ris. In order to allow the processor to recognize

collisions, the signal on the RX(I) pins is echoed on the TX(I) pins.

• Powering of the Processor

The TSS721 provides a nominal voltage of 3.3 V at its VDD Pin, in order to supply power

to a microprocessor. When limited to a standard load, according to the data sheet this

processor may however consume an average current of about 600 µA. For pulse current

requirements, use is made of the reservoir capacitor STC. When connection is made to the

bus, this capacitor will be charged at up to 7 V, and the power supply at the VDD pin is

activated at VSTC = 6 V. The TSS721 signals the failure of the bus voltage at the PF-Pin

(power fail), so that the processor has time to store its data in e.g. an EEPROM, whilst

powered by the reservoir capacitor. In addition, the transceiver permits the connection of a

battery to the VDD Pin should the bus fail, by means of FET at the VS Pin (voltage

switch). In such a case, and when the microprocessor is powered solely with a battery, the

voltage must also be taken to the BAT Pin in order to match into the TSS721.

20 4 Physical Layer

Figure 11a) shows three alternative operating modes for the TSS721 which can be used to

power a microprocessor. It shows that the processor can be supplied exclusively by the

transceiver (remote supply), normally from the TSS721 and with bus failure from a battery

(remote supply/battery support), or only by the battery. Few external components are needed

to build a complete slave with the TSS721, apart from the microprocessor or microcontroller

and the components specifically required for the sensing elements. Besides Fig. 11b) shows a

basic optocoupler application.

BUSL1

VS

VDD
BAT

PF RXI TXI

BUSL2

RIDD
RIS
SC

STC
GND

TSS721

VDD

GND

INP TX RX

uC

BUSL1

VS

VDD
BAT

PF RXI TXI

BUSL2

RIDD
RIS
SC

STC
GND

TSS721

VDD

GND

INP TX RX

uC

BUSL1

VS

VDD
BAT

PF RXI TXI

BUSL2

RIDD
RIS
SC

STC
GND

TSS721

VDD

GND

INP TX RX

uC

METER BUS

D1

Remote Supply/

Battery Support
Battery Supply Remote Supply

Fig. 11a) Operating Modes of the TSS721 for Powering a Microcontroller [4]

VDD
BAT

RXI
TX

RIDD
RIS
SC

GND

TSS721

M-BusBUSL1

BUSL2

STC

RX

TX

VDD

GND

uC

Fig. 11b) Basic optocoupler application [4]

5.1 Transmission Parameters 21

5 Data Link Layer

The physical layer makes certain demands on the data link layer. Besides half-duplex

asynchronous serial transmission with data rates between 300 and 9600 Baud, these include

the requirement that at least every eleventh bit should be a logical 1, and also that there should

be a Master-Slave structure, since the slaves can not communicate with each other.

The protocol of the data link layer is based on the international standard IEC 870-5, which

defines the transmission protocols for telecontrol equipment and systems. The M-Bus protocol

described below derives from the above standard, but doesn´t use all the IEC functions.

The signal quality requirements for master and slaves are listed in the document

'WG4N86R2.DOC' ♣ (available in the mailbox and via internet). It is based on the

international standard IEC 7480.

5.1 Transmission Parameters

This protocol uses asynchronous serial bit transmission, in which the synchronization is

implemented with start and stop bits for each character. There must be no pauses within a

telegram, not even after a stop bit. Since quiescence on the line corresponds to a 1 (Mark), the

start bit must be a Space, and the stop bit a Mark. In between the eight data bits and the even

parity bit are transmitted, ensuring that at least every eleventh bit is a Mark. The bits of data

are transmitted in ascending order, i.e. the bit with the lowest value (LSB = least significant

bit) is the first one to be found on the line. The transmission takes place in half duplex and

with a data rate of at least 300 Baud. In Figure 12, the transmission of a byte in calling and

replying direction is represented.

Start 1 2 3 4 5 6 7 8 Stop

Start 1 2 3 4 5 6 7 8 Stop

 - 12 V

Imark

Imark
+ (11-20)mA

t

t

Vmark

Vmark

Calling Direction (Master to Slave)

Parity

Parity

Replying Direction (Slave to Master)

Fig. 12 Transmission of a Character in Calling and Replying Direction

22 5 Data Link Layer

5.2 Telegram Format

According to IEC 870-5, three different data integrity classes (I1, I2 and I3) are envisaged for

the transmission of remote control data. The data integrity class is a measure of the quotient

between the rate of undetected false messages and the probability of faulty bits during

transmission. For the data integrity classes mentioned above, various format classes have been

identified, in which measures to recognize transmission faults are defined. For the M-Bus

protocol of the data link layer the format class FT 1.2 is used, which is contained in the data

integrity class I2, which specifies a Hamming Distance of four.

The format class FT 1.2 specifies three different telegram formats, which can be recognized

by means of special start characters. Below, and in figure 13, the telegram formats used for the

M-Bus will now be explained.

Single Character Short Frame Control Frame Long Frame

E5h Start 10h Start 68h Start 68h

C Field L Field = 3 L Field

A Field L Field = 3 L Field

Check Sum Start 68h Start 68h

Stop 16h C Field C Field

A Field A Field

CI Field CI Field

Check Sum User Data

Stop 16h (0-252 Byte)

Check Sum

Stop 16h

Fig. 13 Telegram Formats of the M-Bus Protocol

• Single Character

This format consists of a single character, namely the E5h (decimal 229), and serves to

acknowledge receipt of transmissions.

• Short Frame

This format with a fixed length begins with the start character 10h, and besides the C and

A fields includes the check sum (this is made up from the two last mentioned characters),

and the stop character 16h.

5.3 Meaning of the Fields 23

• Long Frame

With the long frame, after the start character 68h, the length field (L field) is first

transmitted twice, followed by the start character once again. After this, there follow the

function field (C field), the address field (A field) and the control information field (CI

field). The L field gives the quantity of the user data inputs plus 3 (for C,A,CI). After the

user data inputs, the check sum is transmitted, which is built up over the same area as the

length field, and in conclusion the stop character 16h is transmitted.

• Control Frame

The control sentence conforms to the long sentence without user data, with an L field from

the contents of 3. The check sum is calculated at this point from the fields C, A and CI.

5.3 Meaning of the Fields

In this section, the fields used for telegram formats will be explained. These all have a length

of 1 Byte, corresponding to 8 bits.

C Field (Control Field, Function Field)

Besides labeling the functions and the actions caused by them, the function field specifies the

direction of data flow, and is responsible for various additional tasks in both the calling and

replying directions. Figure 14 shows the coding of the individual bits of the C field:

Bit Number 7 6 5 4 3 2 1 0

Calling Direction 0 1 FCB FCV F3 F2 F1 F0

Reply Direction 0 0 ACD DFC F3 F2 F1 F0

Fig. 14 Coding of the Control Field

The highest value (most significant) bit is reserved for future functions, and at present is

allocated the value 0; bit number 6 is used to specify the direction of data flow. The frame

count bit FCB indicates successful transmission procedures (i.e. those that have been replied

to or acknowledged - see 5.4), in order to avoid transmission loss or multiplication. If the

expected reply is missing or reception is faulty, the master sends again the same telegram with

an identical FCB, and the slave replies with the same telegram as previously. The master

indicates with a 1 in the FCV bit (frame count bit valid), that the FCB is used. When the FCV

contains a "0", the slave should ignore the FCB. For more about the FCB see chapter 5.5.

In the replying direction, both these bits can undertake other tasks. The DFC (data flow

control) serves to control the flow of data, in that the slave with a DFC=1 indicates that it can

accept no further data. With an ACD bit (access demand) with a value of 1, the slave shows

24 5 Data Link Layer

that it wants to transmit Class 1 data. The master should then send it a command to request

Class 1 data. Such Class 1 data is of higher priority, which (in contrast to Class 2 data) should

be transmitted as soon as possible. The support of Class 1 data and the bits DFC and ADC is

not required by the standard.

The bits 0 to 3 of the control field code the true function or action of the message. Table 1

shows the function codes used in the calling and the replying directions. The functions shown

in this table will be explained in more detail in the next section. All additional function codes

defined in IEC 870-5-2 can also be used.

Name C Field
Binary

C Field
Hex.

Telegram Description

SND_NKE 0100 0000 40 Short Frame Initialization of Slave

SND_UD 01F1 0011 53/73 Long/Control
Frame

Send User Data to Slave

REQ_UD2 01F1 1011 5B/7B Short Frame Request for Class 2 Data

REQ_UD1 01F1 1010 5A/7A Short Frame Request for Class1 Data
(see 8.1: Alarm Protocol)

RSP_UD 00AD 1000 08/18/28/38 Long/Control
Frame

Data Transfer from Slave
to Master after Request

Table 1 Control Codes of the M-Bus Protocol (F : FCB-Bit, A : ACD-Bit, D : DFC-Bit)

A Field (Address Field)

The address field serves to address the recipient in the calling direction, and to identify the

sender of information in the receiving direction. The size of this field is one Byte, and can

therefore take values from 0 to 255. The addresses 1 to 250 can be allocated to the individual

slaves, up to a maximum of 250. Unconfigured slaves are given the address 0 at manufacture,

and as a rule are allocated one of these addresses when connected to the M-Bus. The addresses

254 (FEh) and 255 (FFh) are used to transmit information to all participants (Broadcast). With

address 255 none of the slaves reply, and with address 254 all slaves reply with their own

addresses. The latter case naturally results in collisions when two or more slaves are

connected, and should only be used for test purposes. The address 253 (FDh) indicates that the

adressing has been performed in the Network Layer (see chapter 7) instead of Data Link

Layer. The remaining addresses 251 and 252 have been kept for future applications.

5.4 Communication Process 25

CI Field (control information field)

The control information field is already a part of the Application Layer, and is described in

more detail in section 6.1. It was included in the telegram format used, in order to distinguish

between the formats of the long and the control frames. The control information allows the

implementation of a variety of actions in the master or the slaves.

Check Sum

The Check Sum serves to recognize transmission and synchronization faults, and is

configured from specific parts of the telegram. These parts are mentioned when presenting the

individual telegram formats in 5.2. The Check Sum is calculated from the arithmetical sum of

the data mentioned above, without taking carry digits into account.

5.4 Communication Process

The Data Link Layer uses two kinds of transmission services:

• Send/Confirm : SND/CON

• Request/Respond : REQ/RSP

♣ After the reception off a valid telegram the slave has to wait between 11 bit times and (330

bit times + 50ms) before answering (see also EN1434-3).

Send/Confirm Procedures

• SND_NKE → Single control character

This procedure serves to start up after the interruption or beginning of communication.

The value of the frame count bit FCB is adjusted in master and slave, i.e. the first master

telegram with FCV=1 after SND_NKE contains a FCB=1. The slave responds to a

correctly received SND_NKE with an acknowledgment consisting of a single character

(E5h).

• SND_UD → Single control character

With this procedure the master transfers user data to the slave. The slave can either

confirm the correct receipt of data with a single character acknowledge ("$E5"), or by

omitting a confirmation signal that it did not receive the telegram correctly.

26 5 Data Link Layer

Request/Respond Procedures

• REQ_UD2 → RSP_UD

The master requests data from the slave according to Class 2. The slave can either transfer

its data with RSP_UD, or give no response indicating that the REQ_UD2 telegram has not

been received correctly or that the address contained in the REQ_UD2 telegram does not

match.

Minimum Communication

According to the European standard EN1434-3, as a minimum for communication the

procedures REQ_UD2 / RSP_UD and ♣ SND_NKE / $E5 are needed. All other functions are

optional.

Transmission Procedures in case of faults

A fault in a received telegram can be detected by the receiver (master or slave), by checking

the following points:

• Start /Parity /Stop bits per character

• Start /Check Sum /Stop characters per telegram format

• the second Start character, the parity of the two field lengths, and the number of additional

characters received (= L Field + 6) with a long or control frame

When a fault has been detected as a result of the above checks, the transmission will not be

accepted, and the reply or acknowledgement will not be sent.

After a time limit of (330 bit periods + 50 ms) the master interprets the lack of a reply as a

fault and repeats the same telegram up to two times. If a valid telegram has not been received

at that time a so called "idle time" of at least 33 bit periods is introduced. When slaves send

faulty or corrupt replies, three attempts are also made, and if there is a fault during the last

attempt then the 33 bit periods "idle time" is introduced.

The master may try a SND_NKE. If this fails also it will continue with the next slave address.

5.5 FCB- and FCV-Bits and Addressing 27

5.5 FCB- and FCV-Bits and Addressing
(♣ whole chapter reworked)

The FCB (Frame Count-Bit) in the REQ_UD2 can be considered as the LSB of a telegram

counter of transmitted telegrams in the slave to master direction. On the other hand, the FCB

in the SND_UD can be considered as the LSB of a (separate) telegram counter for the

transmitted telegrams in the master to slave direction. A set FCV (Frame Count Valid)-Bit

signals whether this frame count mechanism is active.

5.5.1 Applications of the FCB-mechanism

1.) Multi-telegram answers (RSP_UD) from slave to master

If a total answer sequence from a slave will not fit into a single RSP_UD (respond user data)

telegram from the slave to the master, the master signals by a toggled FCB-Bit together with a

set FCV-Bit in the next REQ_UD (Request user data) telegram that its link layer has properly

received the last RSP_UD-telegram from the slave. The slave answers to a REQ_UD-request

with toggled FCB-Bit with a set FCV-bit from the master with a RSP_UD containing the next

link layer telegram section of a multi-telegram answer, otherwise it will repeat the last

telegram. Note that a slave with a single RSP_UD-telegram may simply ignore the FCB in the

REQ_UD2-telegram and send always the same (single) telegram. Note also that a slave with

exactly two (sequential) RSP_UD-answer telegrams may simply use the FCB of the

REQ_UD2 to decide which of both telegrams should be transmitted. Thus a slave with one or

two (sequential) RSP_UD answer-telegrams does not require an internal "Last-REQ_UD2-

FCB"-image bit. A slave with three or more (sequential) RSP_UD answer telegrams requires

such an internal memory bit. Note that such an internal memory bit for the RSP_UD-direction

must be independent of an possible additional internal memory bit for the SND_UD direction

(see master to slave section).

2.) Frozen answer telegrams from slave to master

In same instances a slave will freeze the data of its last RSP_UD answer telegram into an

additional temporary storage and will repeat these previously frozen RSP_UD answer, if the

FCB has not been toggled. After the reception of a toggled FCB-Bit with a set FCV-Bit or

after the reception of a REQ_UD2 with the FCV-Bit cleared, the slave will generate a next

answer telegram reflecting the current state of all its data instead of repeating the data values

frozen at the first REQ_UD2 attempt with toggled FCB. In meter applications this frozen-

telegram aproach will result in possibly very old meter data if the last REQ_UD2 with toggled

FCB-bit occured a long time ago. Thus for meter readout this frozen telegram technique is not

recommended.

28 5 Data Link Layer

3.) Multi-telegram data (SND_UD) from master to slave

If the master sends a large (sequential) data block to a slave (e.g. RAM/EEPROM-initialize,

code upload) which must be divided into multiple telegrams a similar situation like in the

slave to master direction might occur. If the slave receives a telegram correctly and answers

with a positive acknowledge (usually by a $E5 single byte answer) but the master does not

receive this positive answer correctly, the master will repeat the last telegram with the

identical FCB-Bit as in the first attempt. From this the slave can recognize that this next

telegram does not contain the next data block but repeats the last data block which has been

received correctly. So the slave may either ignore this telegram repetition completely or may

accept it thus overwriting the last telegrams data with the second identical data. In both cases

an internal telegram sequence counter is not incremented. Note that a slave which will accept

only single telegram master to slave communication may simply ignore the FCB in the

SND_UD. Note also that a master which can accept exactly two (sequential) SND_UD-

telegrams may simply use the FCB of the SND_UD to decide which of both telegrams has

been sent. Thus a slave which can accept one or two (sequential) SND_UD answer-telegrams

does not require an internal "Last-SND_UD-FCB"-image bit. A slave which can accept three

or more (sequential) SND_UD telegrams requires such an internal memory bit. Note that such

an internal memory bit for the SND_UD-direction must be independent of an possible

additional internal memory bit for the RSP_UD direction.

4.) Incremental actions in slave initiated by master

If single telegram SND_UD will initiate some incremental action in a slave (like toggling a

relais or counting something) in contrast to sending some "absolute" data or parameters the

FCB-mechanism allows as in the multi-telegram SND_UD situation a distinction between a

repetition of the last telegram due to missed acklowledge reception and the next action. In this

case the action is only taken if the FCB of the current SND_UD-telegram is different

from the FCB in the previous SND_UD-telegram.

5.5.2 Implementation aspects for primary addressing

1.) Master

The master must always contain a "Next REQ_UD2-FCB-image bit" and also a "Next

SND_UD-FCB image bit" for each primary slave address used by its application layer. After

sending a SND_NKE-request to a slave adress both these "Next FCB-image bit" associated

with this address contained in the request must be set. Thus for each primary address the first

REQ_UD2 or SND_UD telegram after a SND_NKE contains a set FCB-Bit. Note that after a

memory loss (usually due to a power failure) of these "Next FCB-image bits" the master is

5.5 FCB- and FCV-Bits and Addressing 29

required to send a SND_NKE to all affected addresses. All subsequent RSP_UD2-telegrams

must contain the "Next REQ_UD2- FCB-image bit" of the appropriate primary address as a

FCB. This "Next REQ_UD2 FCB-image bit" is toggeled after an error free link layer

RSP_UD telegram has been received. All subsequent SND_UD-telegrams must contain the

"Next SND_UD- FCB-image bit of the appropriate primary address as a FCB. If a SND_UD

has been successfully transmitted to a slave (reception of a valid acknowledge byte $E5 or a

valid RSP_ACK telegram) this "Next SND_UD-FCB-image bit" associated with this address

is toggled.

2.) Slave

If a slave wants to utilize the FCB-Bit mechanism for the REQ_UD2-type (slave to master)

transfers for more than two sequential telegrams it must provide a "Last REQ_UD2-FCB"-

memory bit. If a valid REQ_UD2 telegram with a set FCV-Bit is received its FCB-Bit is

compared to this "Last REQ_UD2-FCB-Bit". If they differ or the FCV-bit is clear, the

next actual telegram data are used for the RSP_UD answer otherwise the last (stored) telegram

is repeated.

If a slave wants to utilize the FCB-Bit mechanism for the SND_UD-type (master to slave)

transfers for more than two sequential telegrams it must provide a "Last SND_UD-FCB"-

memory bit. If a valid SND_UD telegram with a set FCV-Bit is received, its FCB-Bit is

compared to this "Last SND_UD-FCB-memory Bit". If they differ or the FCV-bit is clear, the

next actual telegram data are used for the RSP_UD answer otherwise the last (stored) telegram

is repeated.

Note that after a valid reception of a SND_NKE to the primary address of the device or to the

test adress 254 ($FE) or the broadcast adress 255 ($255) these internal "Last FCB" memory

bits must be cleared.

3.) Implementation for multiple address slaves

A slave might be configured to respond to more than one primary address. This could be

useful for slaves which internally consist of more than one independent functional blocks. If

this slave wants to utilize FCB-funcionalities they must implement the appropriate number of

internal memory bits (0, 1 or 2) for each of these adresses.

4.) Implementation for the primary (broadcast) address 255

All transfers to the primary broadcast address 255 ($FF) are not answered and should hence be

implemented by the master with the FCV-Bit cleared. Note that a SND_NKE to primary

address 255 will clear the internal "Last received FCB"-Bits of all slaves with primary

addresses 0-250 and with FCB-Bit implementation simultaneously.

30 5 Data Link Layer

5.) Implementation for the primary (test) address 254 ($FE)

A slave should answer to all requests to the primary address 254 ($FE=test address)

irrespective of its own primary address. The answer must contain its own primary address and

not the address 254 ($FE). This test address is used by readout- or test equipment in point-to-

point mode. Although this is a second primary address for each slave separate "Last received

FCB"- Bit(s) are not required for this special case, since any test equipment or master is

required to issue a SND_NKE after each reconnect or power fail thus clearing the "Last

received FCB"-Bit(s) and thus preparing for a virgin transaction irrespective of the previous

communication history.

6.) Implementation for secondary addressing

For the usage of the FCB-Bit in secondary addressing see chapter 7.2.

6.1 CI-Field 31

6 Application Layer

The standardized application protocol in the standard EN1434-3 for data exchange with heat

meters will be the basis for the following discussion. This standard is also suitable for other

consumer utility meters, e.g. for gas and water. However, EN1434-3 only covers the data

structure in the reply direction, the data structure generally used in the direction master to

slave will be presented here.

6.1 CI-Field

The CI-Field codes the type and sequence of application data to be transmitted in this frame.

The EN1434-3 defines two possible data sequences in multibyte records. The bit two

(counting begins with bit 0, value 4), which is called M bit or Mode bit, in the CI field gives

an information about the used byte sequence in multibyte data structures. If the Mode bit is

not set (Mode 1), the least significant byte of a multibyte record is transmitted first, otherwise

(Mode 2) the most significant byte. The Usergroup recommends to use only the Mode 1 in

future applications.

Mode 1 Mode 2 Application Definition in
51h 55h data send EN1434-3
52h 56h selection of slaves Usergroup July ´93
50h application reset Usergroup March ´94
54h synronize action suggestion
B8h set baudrate to 300 baud Usergroup July ´93
B9h set baudrate to 600 baud Usergroup July ´93
BAh set baudrate to 1200 baud Usergroup July ´93
BBh set baudrate to 2400 baud Usergroup July ´93
BCh set baudrate to 4800 baud Usergroup July ´93
BDh set baudrate to 9600 baud Usergroup July ´93
BEh set baudrate to 19200 baud suggestion
BFh set baudrate to 38400 baud suggestion
B1h request readout of complete RAM content Techem suggestion
B2h send user data (not standardized RAM write) Techem suggestion
B3h initialize test calibration mode Usergroup July ´93
B4h EEPROM read Techem suggestion
B6h start software test Techem suggestion

90h to
97h

codes used for hashing obsolete and no
longer recommended

Table 2 CI-Field codes used by the master

32 6 Application Layer

Application reset (CI = $50)

With the CI-Code $50 the master can release a reset of the application layer in the slaves.

Each slave himself decides which parameters to change - e.g. which data output is default -

after it has received such an application reset. This application reset by a SND_UD with

CI=$50 is the counterpart to the reset of the data link layer by a SND_NKE.

Application reset subcode ♣

It is allowed to use optional parameters after CI = $50. The first parameter (the application

reset subcode) defines which telegram function and which subtelegram is requested by the

master. The datatype of this parameter is 8 bit binary. The upper 4 bits define the telegram

type or telegram application and the lower 4 bits define the number of the subtelegram. The

use of the value zero for the number of the subtelegram means that all telegrams are

requested.

Slaves with only one type of telegram may ignore application reset and the added parameters

but have to confirm it ($E5).

The following codes can be used for the upper 4 bits of the first parameter:

Coding Description Examples
0000b All
0001b User data consumption
0010b Simple billing actual and fixed date values+dates
0011b Enhanced billing historic values
0100b Multi tariff billing
0101b Instaneous values for regulation
0110b Load management values for management
0111b Reserved
1000b Installation and startup bus adress, fixed dates
1001b Testing high resolution values
1010b Calibration
1011b Manufacturing
1100b Development
1101b Selftest
1110b Reserved
1111b Reserved

Table 3 Coding of the upper four bits of the first parameter after CI = $50

6.1 CI-Field 33

Example:

The master releases an enhanced application reset to all slaves. All telegrams of the user data

type are requested.

Master to Slave: 68 04 04 68 | 53 FE 50 | 10 | B1 16

Slave to Master: E5

Syncronize action (CI = $54) ♣

This CI-code can be used for syncronizing functions in slaves and masters (e.g. clock

syncronization).

The use of the other control information codes is described in the chapters 6.4.1 (set baudrate

to 300 .. 38400 Bd), 6.4.2 (data send) and 7 (selection of slaves).

The following codes can be used for the direction slave to master:

CI M=0 CI M=1 Application Defined in
70h report of general application errors Usergroup March ´94
71h report of alarm status Usergroup March ´94
72h 76h variable data respond EN1434-3
73h 77h fixed data respond EN1434-3

Table 4 CI-Field codes used by the slave

The use of these control information codes is described in the chapters 6.1 (fixed data

respond), 6.2 (variable data respond), 6.6 (report of general application errors) and 8.1 (report

of alarm status).

34 6 Application Layer

6.2 Fixed Data Structure

In the reply direction with a long frame two different data structures are used. The fixed data

structure, besides a fixed length, is limited to the transmission of only two counter states of a

predetermined length, which have binary or BCD coding. In contrast the variable data

structure allows the transmission of more counter states in various codes and further useful

information about the data. The number of bytes of the transmitted counter states is also

variable with this data structure. Contrary to the fixed structure, the variable structure can also

be used in calling direction. For this reasons the fixed data structure is not recommended for

future developments.

To identify the fixed data structure, the numbers 73h/77h for the control information field are

used. In this way the master software can see how it must interpret the data.

Identification No. Access No. Status Medium/Unit Counter 1 Counter 2

4 Byte 1 Byte 1 Byte 2 Byte 4 Byte 4 Byte

Fig. 15 Fixed Data Structure in Reply Direction (transmit sequence from left to right)

The Identification Number is a serial number allocated during manufacture, coded with 8

BCD packed digits (4 Byte), and which thus runs from 00000000 to 99999999.

The Access Number has unsigned binary coding, and is increased by one after each RSP_UD

from the slave. With the field Status various information about the status of counters, and

faults which have occurred, can be communicated - see Figure 16:

Bit Meaning with Bit set Significance with Bit not set

0 Counter 1 and 2 coded signed binary Counter 1 and 2 coded BCD

1 Counter 1 and 2 are stored at fixed date Counter 1 and 2 are actual values

2 Power low Not power low

3 Permanent error No permanent error

4 Temporary error No temporary error

5 Specific to manufacturer Specific to manufacturer

6 Specific to manufacturer Specific to manufacturer

7 Specific to manufacturer Specific to manufacturer

Fig. 16 Coding of the Status Field

6.2 Fixed Data Structure 35

The field Medium/Unit is always transmitted with least significant byte first and gives the

medium measured for both counter states, and the units for each of the two counter states. The

units of counter 1 are coded with the first 6 bits of the first byte, and the units of counter 2

with the first 6 bits of the second byte. The coding of the medium is made up of the two

highest bits of these bytes, and can therefore have 16 different values (4 bits). Tables to

represent the physical units and the coding of the medium are in the appendix.

Byte Byte No. 8 (byte 2 of medium/unit) Byte No. 7 (byte 1 of medium/unit)

Bit 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Medium physical unit of counter 2 Medium physical unit of counter 1

MSB MSB LSB LSB MSB LSB

Fig. 17 Coding of physical unit and medium in fixed data structure (data type E)

To allow transmission of one historic value with one of the two counters the special unit

(111110b or hex code share of 3Eh) has been defined. This unit declares that this historic

counter has the same unit as the other actual counter.

Example for a RSP_UD with fixed data structure (mode 1):

The slave with address 5 and identification number 12345678 responds with the following

data (all values hex.):

68 13 13 68 header of RSP_UD telegram (L-Field = 13h = 19d)

08 05 73 C field = 08h (RSP_UD), address 5, CI field = 73h (fixed, LSByte first)

78 56 34 12 identification number = 12345678

0A transmission counter = 0Ah = 10d

00 status 00h: counters coded BCD, actual values, no errors

E9 7E Type&Unit: medium water, unit1 = 1l, unit2 = 1l (same, but historic)

01 00 00 00 counter 1 = 1l (actual value)

35 01 00 00 counter 2 = 135 l (historic value)

3C 16 checksum and stop sign

36 6 Application Layer

6.3 Variable Data Structure

The CI-Field codes 72h/76h are used to indicate the variable data structure in long frames

(RSP_UD). Figure 18 shows the way this data is represented:

Fixed Data Header Variable Data Blocks (Records) MDH Mfg.specific data

12 Byte variable number 1 Byte variable number

Fig. 18 Variable Data Structure in Reply Direction

6.3.1 Fixed Data Header

The first twelve bytes of the user data consist of a block with a fixed length and structure (see

fig. 19).

Ident. Nr. Manufr. Version Medium Access No. Status Signature

4 Byte 2 Byte 1 Byte 1 Byte 1 Byte 1 Byte 2 Byte

Fig. 19 Fixed Data Block

♣ In contrast to the fixed data structure here the Identification Number is a customer

number, coded with 8 BCD packed digits (4 Byte), and which thus runs from 00000000 to

99999999. It can be preset at fabrication time with a unique number, but could be changeable

afterwards, especially if in addition an unique and not changeable fabrication number (DIF =

$0C, VIF = $78, see chapter 6.7.3) is provided.

The access number is described above in the fixed data structure (see chapter 6.2).

The field manufacturer is coded unsigned binary with 2 bytes. This manufacturer ID is

calculated from the ASCII code of EN 61107 manufacturer ID (three uppercase letters) with

the following formula:

IEC 870 Man. ID = [ASCII(1st letter) - 64] • 32 • 32

+ [ASCII(2nd letter) - 64] • 32

+ [ASCII(3rd letter) - 64]

The field version specifies the generation or version of this counter and depends on the

manufacturer. In contrast to the fixed data structure, the Medium is coded with a whole byte

instead of four bits and the lowest two bits of the Status field are used to indicate application

6.3 Variable Data Structure 37

errors (see chapter 6.6). Apart from this, the significance of the individual bits of the Status

field is the same as that of the fixed data structure. The Signature remains reserved for future

encryptation applications, and until then is allocated the value 00 00 h.

6.3.2 Variable Data Blocks

The data, together with information regarding coding, length and the type of data is

transmitted in data records. As many blocks of data can be transferred as there is room for,

within the maximum data length of 255 Bytes, and taking account of the C, A , and CI fields,

the fixed data block. The upper limit for characters in the variable data blocks is thus 240

byte. The Usergroup recommends a maximum total telegram length of 255 bytes (234 bytes

for variable data blocks) to avoid problems in modem communication. The manufacturer data

header (MDH) is made up by the character 0Fh or 1Fh and indicates the beginning of the

manufacturer specific part of the user data and should be omitted, if there is no manufacturer

specific data.

Data Information Block

DIF DIFE VIF VIFE Data

1 Byte 0-10 (1 Byte each) 1 Byte 0-10 (1 Byte each) 0-N Byte

Data Information Block DIB Value Information Block VIB

Data Record Header DRH

Fig. 20 Structure of a Data Record (transmitted from left to right)

Each data record contains one value with its description as shown in figure 20, a data record,

which consists of a data record header (DRH) and the actual data. The DRH in turn consists of

the DIB (data information block) to describe the length, type and coding of the data, and the

VIB (value information block) to give the value of the unit and the multiplier.

38 6 Application Layer

The DIB contains at least one byte (DIF, data information field), and can be extended by a

maximum of ten DIFE's (data information field extensions). The following information is

contained in a DIF:

Bit 7 6 5 4 3 2 1 0

Extension
Bit

LSB of
storage
number

Function Field
Data Field :

Length and coding of data

Fig. 21 Coding of the Data Information Field (DIF)

6.3 Variable Data Structure 39

The function field gives the type of data as follows:

Code Description Code Description

00b Instantaneous value 01b Maximum value

10b Minimum value 11b Value during error state

The data field shows how the data from the master must be interpreted in respect of length

and coding. The following table contains the possible coding of the data field:

Length in Bit Code Meaning Code Meaning

0 0000 No data 1000 Selection for Readout

8 0001 8 Bit Integer 1001 2 digit BCD

16 0010 16 Bit Integer 1010 4 digit BCD

24 0011 24 Bit Integer 1011 6 digit BCD

32 0100 32 Bit Integer 1100 8 digit BCD

32 / N 0101 32 Bit Real 1101 variable length

48 0110 48 Bit Integer 1110 12 digit BCD

64 0111 64 Bit Integer 1111 Special Functions

Table 5 Coding of the data field

For a detailed description of data types refer to appendix 8.2 “ Coding of data records“

(BCD = Type A, Integer = Type B, Real = Type H).

Variable Length:

With data field = `1101b` several data types with variable length can be used. The length of

the data is given after the DRH with the first byte of real data, which is here called LVAR

(e.g. LVAR = 02h: ASCII string with two characters follows) ♣.

LVAR = 00h .. BFh : ASCII string with LVAR characters

LVAR = C0h .. CFh : positive BCD number with (LVAR - C0h) • 2 digits

LVAR = D0h .. DFH : negative BCD number with (LVAR - D0h) • 2 digits

LVAR = E0h .. EFh : binary number with (LVAR - E0h) bytes

LVAR = F0h .. FAh : floating point number with (LVAR - F0h) bytes [to be

defined]

LVAR = FBh .. FFh : Reserved

40 6 Application Layer

Like all multibyte fields in mode 1 the last character and in mode 2 the first character is

transmitted first.

6.3 Variable Data Structure 41

Special Functions (data field = 1111b):

DIF Function

0Fh Start of manufacturer specific data structures to end of user data

1Fh Same meaning as DIF = 0Fh + More records follow in next telegram

2Fh Idle Filler (not to be interpreted), following byte = DIF

3Fh..6Fh Reserved

7Fh Global readout request (all storage#, units, tariffs, function fields)

If data follows after DIF=$0F or $1F these are manufacturer specific data records. The number

of bytes in these manufacturer specific data can be calculated with the L-Field. The DIF 1Fh

signals a request from the slave to the master to readout the slave once again. The master must

readout the slave until there is no DIF=1Fh inside the respond telegram (multi telegram

readout).

The Bit 6 of the DIF serves to give the storage number of the data concerned, and the slave

can in this way indicate and transmit various stored counter states or historical values, in the

order in which they occur. This bit is the least significant bit of the storage number and allows

therefore the storage numbers 0 and 1 to be given without further DIFE's. In this way the

storage number 0 stands for the actual value. If higher storage numbers are needed, the slave

allows a DIFE to follow the DIF, and indicates this by setting the extension bit.

Each DIFE (maximum ten) contains again an extension bit to show that a further DIFE is

being sent. Besides giving the next most significant bit of the storage number, this DIFE

allows the transmission of informations about the tariff and the subunit of the device from

which the data come. In this way, exactly as with the storage number, the next most

significant bit or bits will be transmitted. The figure 22 which follows shows the structure of a

DIFE:

Bit 7 6 5 4 3 2 1 0

Extension

Bit

(Device)

Unit
Tariff Storage Number

Fig. 22 Coding of the Data Information Field Extension (DIFE)

42 6 Application Layer

With the maximum of ten DIFE´s which are provided, there are 41 bits for the storage

number, 20 bits for the tariff, and 10 bits for the subunit of the meter. There is no application

conceivable in which this immense number of bits could all be used.

Value Information Block (VIB)

After a DIF or DIFE without a set extension bit there follows the VIB (value information

block). This consists at least of the VIF (value information field) and can be expanded with a

maximum of 10 extensions (VIFE). The VIF and also the VIFE's show with a set MSB that a

VIFE will follow. In the value information field VIF the other seven bits give the unit and the

multiplier of the transmitted value.

Bit 7 6 5 4 3 2 1 0

Extension

Bit
Unit and multiplier (value)

Fig. 23 Coding of the Value Information Field (VIF)

There are five types of coding depending on the VIF:

1. Primary VIF: E000 0000b .. E111 1011b

The unit and multiplier is taken from the table for primary VIF (chapter 8.4.3).

2. Plain-text VIF: E111 1100b

In case of VIF = 7Ch / FCh the true VIF is represented by the following ASCII string with

the length given in the first byte. Please note that the byte order of the characters after the

length byte depends on the used byte sequence. This plain text VIF allows the user to code

units that are not included in the VIF tables.

3. Linear VIF-Extension: FDh and FBh

In case of VIF = FDh and VIF = FBh the true VIF is given by the next byte and the coding

is taken from the table for secondary VIF (chapter 8.4.4). This extends the available VIF´s

by another 256 codes.

4. Any VIF: 7Eh / FEh

This VIF-Code can be used in direction master to slave for readout selection of all VIF´s.

See chapter 6.4.3.

5. Manufacturer specific: 7Fh / FFh

In this case the remainder of this data record including VIFE´s has manufacturer specific

coding.

6.3 Variable Data Structure 43

The VIFE can be used for actions which shall be done with the data (master to slave, chapter

6.5), for reports of application errors (slave to master, chapter 6.6) and for an enhancement of

the VIF (orthogonal VIF, chapter 8.4.5). The last feature allows setting VIF´s into relation to

the base physical units (e.g. VIF=10 liter, VIFE= per hour) or coding indirect units, pulse

increments and change speeds.

In case of VIFE = FFh the next VIFE's and the data of this block are manufacturer specific,

but the VIF is coded as normal.

After a VIF or VIFE with an extension bit of "0", the value information block is closed, and

therefore also the data record header, and the actual data follow in the previously given length

and coding.

6.3.3 Manufacturer Specific Data Block

The MDH consists of the character 0Fh or 1Fh (DIF = 0Fh or 1Fh) and indicates that all

following data are manufacturer specific. When the number of bytes given in the length field

of the connection protocol has not yet been used up, then manufacturer specific data follow

this character, whose coding is left to the manufacturer. The length of this data is calculated

from the L-Field minus the length of the so-called standard data (C-Field, A-Field, CI-Field

and the data up to and including the data block 0Fh).

In case of MDH = 1Fh the slave signals to the master that it wants to be readout once again

(multitelegram readouts). The master must readout the data until there is no MDH = 1Fh in

the respond telegram.

Example for a RSP_UD with variable data structure answer (mode 1):

(all values are hex.)

68 1F 1F 68 header of RSP_UD telegram (length 1Fh=31d bytes)

08 02 72 C field = 08 (RSP), address 2, CI field 72H (var.,LSByte first)

78 56 34 12 identification number = 12345678

24 40 01 07 manufacturer ID = 4024h (PAD in EN 61107), generation 1, water

55 00 00 00 TC = 55h = 85d, Status = 00h, Signature = 0000h

03 13 15 31 00 Data block 1: unit 0, storage No 0, no tariff, instantaneous volume,

12565 l (24 bit integer)

DA 02 3B 13 01 Data block 2: unit 0, storage No 5, no tariff, maximum volume flow,

113 l/h (4 digit BCD)

8B 60 04 37 18 02 Data block 3: unit 1, storage No 0, tariff 2, instantaneous energy,

44 6 Application Layer

218,37 kWh (6 digit BCD)

18 16 checksum and stopsign

6.4 Configuring Slaves 45

6.4 Configuring Slaves

The means for configuring slaves, for example set primary address or secondary address, set

baudrate or set other configuration data inside the slave are explained in this section.

6.4.1 Switching Baudrate

All slaves must be able to communicate with the master using the minimum transmission

speed of 300 baud. Splitted baudrates between transmit and receive are not allowed, but there

can be devices with different baudrates on the bus.

In point to point connections the slave is set to another baudrate by a Control Frame

(SND_UD with L-Field = 3) with address FEh and one of the following CI-Field codes:

CI-Field B8h B9h BAh BBh BCh BDh BEh BFh

Baud 300 600 1200 2400 4800 9600 19200 38400

Note 1 1 1 1,2 2

Fig. 24 CI-Field-Codes for Baudrate Switching

Notes:

1) These baudrates are not recommended.

2) These baudrates will be available in future with new repeater hardware. CI-Field codes

are suggestions by the Usergroup.

The slave confirms the correctly received telegram by transmitting an E5h with the old

baudrate and uses the new baudrate from now on, if he is capable of this.

The master must know the highest available baudrate on the bus to forbid the user switching

to a transmission speed, which is not available on the bus. Otherwise the slave would never

answer again.

Example:

The master switches the slave (in point to point connection) from now 2400 baud to 9600

baud.

Master to slave: 68 03 03 68 | 53 FE BD | 0E 16 with 2400 baud

Slave to master: E5 with 2400 baud

From that time on the slave communicates with the transmission speed 9600 baud.

46 6 Application Layer

6.4.2 Writing Data to a Slave

The master can send data to a slave using a SND_UD with CI-Field 51h for mode 1 or 55h for

mode 2. Note that the data structure in such a write telegram has been changed in contrast to

previous definitions by means of leaving out the fixed data header of 12 byte. The following

figure shows the data structure for a write telegram. The order of the first three blocks in the

following figure can be turned round, but the write only data record must be at the end of the

telegram. All records are optional.

Primary Address

Record

Enhanced Identifica-

tion Record

Normal

Data Records

Write Only Data

Records

Fig. 25 Data Structure for Writing Data

• Primary Address Record:

The primary address record is optional and consists of three bytes:

DIF = 01h VIF = 7Ah Data = Address (1 byte binary)

With this data record a primary address can be assigned to a slave in point to point

connections. The master must know all the used addresses on the bus and forbid setting

the address of a slave to an already used address. Otherwise both slaves with the same

address couldn´t be read out anymore.

• Enhanced Identification Record:

With this optional data record the identification (secondary address) can be changed.

There are two cases to be distinguished:

1) Data is only the identification number

DIF = 0Ch VIF = 79h Data = Identification No. (8 digit BCD)

2) Data is the complete identification

DIF = 07h VIF = 79h Data = complete ID (64 bit integer)

The data is packed exactly as in the readout header of a $72/$76 variable protocol with

low byte first for mode 1 and high byte first for mode 2:

Identification No. Manufacturer ID Generation Medium

4 byte 2 byte 1 byte 1 byte

6.4 Configuring Slaves 47

• Normal Data Records:

The data records, which can be read out with a REQ_UD2, are sent back to the slave with

the received DIF and VIF and the new data contents. Additional features can be

implemented using the generalized object layer (see chapter 6.5 ♣).

• Write-Only Data:

Data, which cannot be read out of the slave with a normal data block, can be transmitted

using the VIF = 7Fh for manufacturer specific coding. The DIF must have a value

corresponding to the type and length of data.

After receiving the SND_UD correctly without any error in data link layer the slave must

answer with an acknowledgement (E5h). The slave decides whether to change variables or not

after a data write from the master. In case of errors in executing parts of or whole write

instructions the slave can decide whether to change no variables or single correct variables.

The slave can report the this errors to the master in the next RSP_UD telegram using some of

the methods which are described in chapter 6.6.

There are some methods for implementing write protect, for example allowing only one write

after a hardware reset of the processor or enabling write if a protect disable jumper is set.

Examples:

1. Set the slave to primary address 8 without changing anything else:

68 06 06 68 | 53 FE 51 | 01 7A 08 | 25 16

2. Set the complete identification of the slave (ID=01020304, Man=4024h (PAD), Gen=1,

Med=4 (Heat):

68 0D 0D 68 | 53 FE 51 | 07 79 04 03 02 01 24 40 01 04 | 95 16 ♣

3. Set identification number of the slave to "12345678" and the 8 digit BCD-Counter (unit 1

kWh) to 107 kWh.

68 0F 0F 68 | 53 FE 51| 0C 79 78 56 34 12 | 0C 06 07 01 00 00 | 55 16

48 6 Application Layer

6.4.3 Configuring Data Output

For default the slave transmits all his data with a RSP_UD. It could be useful for some

applications to read only selected data records out of one or more devices. There are two ways

to select data records:

Selection without specified data field

The selection of the wanted data records can be performed with a SND_UD (CI-Field =

51h/55h) and data records containing the data field 1000b, which means "selection for readout

request". The following VIF defines the selected data as listed in EN1434-3 and no data are

transmitted. The answer data field is determined by the slave. The master can select several

variables by sending more data blocks with this data field in the same telegram.

Special multiple values can be selected with the following methods:

• Any VIF:

The VIF-Code $7E (any VIF) is especially for readout request of "all VIF" from the slave

and can be interpreted as a selection wildcard for the value information field.

• Global readout request:

The DIF-Code $7F is defined as "selection of all data for readout request", i.e. all storage

numbers, units, tariffs and functions. If this DIF is the last byte of user data or the

VIF=$7E follows, then all data is requested. So the selection of all data of one slave can

de done with a SND_UD and the character $7F as the user data. If there follows a DIF

unequal to $7E, then all subfields of this VIF are selected for readout.

• All Tariffs:

The highest tariff number in the selection record is defined as selection of "all tariffs". For

example the tariff 1111b (15) means selection of all tariffs in a record with two DIFE´s.

• All Storage Numbers:

A selection of all storage numbers can be done with the maximum storage number if there

is a minimum of one DIFE. For example the highest storage number is $1F (31) with one

DIFE and $1FF (511) with two DIFE´s.

• All Units:

"All units" can be selected by using a data record header with minimum two DIFE´s and

the highest unit number.

6.4 Configuring Slaves 49

• High Resolution Readout:

The master can select the slave to answer with the maximum resolution to a given value /

unit by a VIF with "nnn" = 000 (minimum exponent for range coding). The meter may

then answer with a resolution of e.g. 1mWh (VIF=0000000b) or some higher decimal

value if required. The unit values have been chosen so that their minimum provides

sufficient resolution even for calibration. A readout request for a VIF with "nnn"=max

(maximum exponent for range coding) signals a request for the standard resolution of the

meter.

After the next REQ_UD2 the slave answers with the selected data in his own format, if the

requested data are available. Otherwise the slave transmits his normal data and the master has

to find out that the data are not the requested one. If there are more than one variables with the

selected VIF, the device should send all these data records.

Selection with specified data field

The master is able to perform a readout request with a specified data field by using the object

action “add to readout list“ (VIFE = E000 1100b) from VIFE-table for object actions (see

chapter 6.5). The master transmits a SND_UD (CI-Field = 51h/55h) with a data record which

consists of the desired DIF (data field), VIF and the VIFE = 0Ch / 8Ch. No data follows this

VIFE and the slave should ignore the data field on reception. The slave should transmit this

data record with the requested data field from now on, if he is capable of this. If the slave

doesn´t support this data field (data coding), it can report a record error using one of the VIFE

= E000 011x (data class not implemented or data size not implemented).

Deselection of data records

The master can release a reset of the application layer and especially a fallback to the slaves

standard RSP_UD-Telegram by transmitting a SND_UD with the CI-Field $50.

Single data records can be deselected by transmitting a data record with DIF, VIF and the

VIFE for the object action “Delete from Readout-List“ (VIFE = E000 1101b).

50 6 Application Layer

If the selected data is supported by the slave but too long for one RSP_UD telegram

(especially for readout of all historic values), the slave transmits an additional data record

consisting only of the DIF=$1F, which means that more data records follow in the next

respond telegram. In this case the master must readout the slave again until the respond

telegram is only an $E5 (no data) or there is no DIF=$1F in the RSP_UD.

To avoid lost of data respond telegrams the slave should in this case support the Frame Count

Bit (FCB). If the master wants to premature end such a multitelegram sequential readout of

the selected data, it may send an application reset with CI=$50 instead of further REQ_UD2´s.

Examples:

1. A slave with address 7 is to be configured to respond with the data records containing

volume (VIF=13h: volume, unit 1l) and flow temperature (VIF=5Ah: flow temp.,

unit 0.1 °C).

68 07 07 68 | 53 07 51 | 08 13 08 5A | 28 16

2. A slave with address 1 is to be configured to respond with all storage numbers, all tariffs,

and all VIF´s from unit 0.

68 06 06 68 | 53 01 51 | C8 3F 7E | 2A 16

3. A slave with address 3 is to be configured to respond with all data for a complete readout

of all available. After that the master can poll the slave to get the data.

68 04 04 68 | 53 03 51 | 7F | 26 16

6.5 Generalized Object Layer 51

6.5 Generalized Object Layer

The fundamental idea of an object is the encapsulation of data and methods or actions for the

data. In case of writing data to a slave the master software can pack data and information

about the action, which the slave shall do with this data, in one data record. This variable data

record with actions is now called an object. If the VIF has not got the value $FD (extended

VIF-Code table) the following VIFE-Codes define the action:

Action: (E: extension bit)

VIFE-Code binary Action Explanation

E000 0000 Write (Replace) replace old with new data

E000 0001 Add Value add data to old data

E000 0010 Subtract Value subtract data from old data

E000 0011 OR (Set Bits) data OR old data

E000 0100 AND data AND old data

E000 0101 XOR (Toggle Bits) data XOR old data

E000 0110 AND NOT (Clear Bits) NOT data AND old data

E000 0111 Clear set data to zero

E000 1000 Add Entry create a new data record

E000 1001 Delete Entry delete an existing data record

E000 1010 Reserved

E000 1011 Freeze Data freeze data to storage no.

E000 1100 Add to Readout-List add data record to RSP_UD

E000 1101 Delete from Readout-List delete data record from RSP_UD

E000 111x Reserved

E001 xxxx Reserved

Fig. 26 Action Codes for the Generalized Object layer (Master to Slave)

With these actions the master can alter the data of the slaves or configure the output data of

the slaves (actions 12 and 13). The actions 0 to 6 alter the data of the slave by replacing the

old data (action 0, equals to data write without VIFE) or do arithmetical or logical operations

with the old and the transmitted data.

Note that this method of configuring the readout list (action 12 and 13) allows not only the

adding but also the removal of elements in contrast to the method of using the DIF=1000b-

type of readout request (described in chapter 6.4.3).

52 6 Application Layer

All these actions can be used for normal slaves and for intelligent master which are

manipulated by a higher order master.

The functions "Add entry" and "Delete entry" are useful to tell an intelligent master to add e.g.

a new data record like maximum or minimum values of any slave.

With the action "freeze data to storage #" the master can tell the slave to freeze the actual

value corresponding to the transmitted VIF, unit, tariff and function to a certain storage

number given in the DIF/DIFE´s. In this case the data field inside the VIF has got the value

0000b (no data). This action allows freeze of selected values or multiple freeze with VIF=$7E

(all VIF). The date / time should also be freezed to the same storage number.

Examples:

1) Set the 8 digit BCD-Counter (instantaneous, actual value, no tariff, unit 0) with

VIF=06 (1kWh) of the slave with address 1 to 107 kWh.

68 0A 0A 68 | 53 01 51 | 0C 86 00 07 01 00 00 | 3F 16

2) Same as in example 1) but add 10 kWh to the old data.

68 0A 0A 68 | 53 01 51 | 0C 86 01 10 00 00 00 | 48 16

3) Add an entry with an 8 digit BCD-Counter (instantaneous, actual value, no tariff,

unit 0, 1kWh) with the start value of 511 kWh to the data records of the slave with

address 5.

68 0A 0A 68 | 53 05 51 | 0C 86 08 11 05 00 00 | 59 16

4) Freeze actual flow temperature (0.1 °C: VIF = 5Ah) of the slave with address 1

into the storage number 1.

68 06 06 68 | 53 01 51 | 40 DA 0B | CA 16

6.6 Application Layer Status 53

6.6 Application Layer Status

There can be so far only data link layer errors reported from slave to master by means of

leaving out the acknowledgement or negative acknowledgement. It is not allowed to report

errors in the application layer, which can occur for example in data writing, using any of the

above methods, because these are reserved for link layer errors. The slave can transmit an $E5

after a REQ_UD2 to indicate that it has received the telegram, but can´t respond with data.

There are three different techniques for reporting application errors:

1. Status Field

One possible solution is to use the reserved 2 lowest bits of the Status field in the variable data

structure for the application layer status:

Status bit 1 bit 0 Application status
0 0 No Error
0 1 Application Busy
1 0 Any Application Error
1 1 Reserved

Fig. 27 Application Errors coded with the Status-Field

2. General Application Errors

For reporting general application errors a slave can use a RSP_UD telegram with CI=$70 and

zero or one byte data, which then describes the type of error:

68h 04h 04h 68h 08h PAdr 70h DATA CS 16h

Fig. 28 Telegram for reporting general application errors

The following values for DATA are defined:

0 Unspecified error: also if data field is missing
1 Unimplemented CI-Field
2 Buffer too long, truncated
3 Too many records
4 Premature end of record
5 More than 10 DIFE´s
6 More than 10 VIFE´s
7 Reserved
8 Application too busy for handling readout request
9 Too many readouts (for slaves with limited readouts per time)

10..255 Reserved

Table 6 Codes for general application errors

54 6 Application Layer

3. Record Errors

To report errors belonging to a special record the slave can use this data record header with a

VIFE containing one of the following values to code the type of application error, which has

been occured.

VIFE-Code Type of Record Error Error Group

E000 0000 None

E000 0001 Too many DIFE´s

E000 0010 Storage number not implemented

E000 0011 Unit number not implemented

E000 0100 Tariff number not implemented DIF Errors

E000 0101 Function not implemented

E000 0110 Data class not implemented

E000 0111 Data size not implemented
E000 1000

to
E000 1010

Reserved

E000 1011 Too many VIFE´s

E000 1100 Illegal VIF-Group

E000 1101 Illegal VIF-Exponent VIF Errors

E000 1110 VIF/DIF mismatch

E000 1111 Unimplemented action
E001 0000

to
E001 0100

Reserved

E001 0101 No data available (undefined value)

E001 0110 Data overflow

E001 0111 Data underflow

E001 1000 Data error Data Errors
E001 1001

to
E001 1011

Reserved

E001 1100 Premature end of record
E001 1101

to
E001 1111

Reserved Other Errors

Table 7 Codes for record errors (E = extension bit)

6.7 Special Slave Features 55

In case of record errors the data maybe invalid. The slave has some options to transmit the

data:

• datafield = 0000b: no data

• datafield = 0000b: no data and idle filler (DIF=$2F): fill telegram up to the normal length

• other datafield: dummy data of correct length

• other datafield: unsafe or estimated data

6.7 Special Slave Features

Some optional or recommended features of the slaves, which are not mentioned in EN1434-3,

will be described in this section.

6.7.1 Auto Speed Detect

♣ This feature is implemented in several slaves. It is no longer recommended by the M-Bus

Usergroup because it is difficult to guarantee a hamming distance of four with this method.

The fact that several baudrates are allowed on the bus causes the problem for the master to

know the used baudrates of all connected slaves. The software must perform the search for

primary and secondary addresses with all allowed baudrates. For this reasons it is useful, if the

slaves would answer with just the baudrate, which the master uses for this telegram. In

addition the risk to loose contact with a slave would be dismissed and commands for baudrate

switching would no longer be required.

The slave detects the baudrate by scanning the start sign of the telegram, which has the value

10h for a short frame or the value 68h for a long frame.

Startsign 10h on the bus:

Start LSB Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 MSB Parity Stop

0 0 0 0 0 1 0 0 0 1 1

Startsign 68h on the bus:

Start LSB Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 MSB Parity Stop

0 0 0 0 1 0 1 1 0 1 1

The startsign 10h begins with five space bits and the startsign 68h with four space bits on the

line. After detecting the beginning of a new telegram the device measures the duration of

56 6 Application Layer

space. By comparing the space duration with a stored table of ranges for five and four bits of

all implemented transmission speeds the slave makes a decision about the baudrate and the

number of space bits (four or five). Then it receives the remaining bits of the startsign (seven

or six) with the detected transmission speed. This procedure has to set for example a flag or a

variable to tell the normal receive procedure the used baudrate.

Auto speed detect of 300, 2400 and 9600 baud has been implemented with an eigth bit

microcontroller and works fine. This feature can be easily programmed in microcontrollers

using software polling for communication, but is more difficult with UART-based

communication.

6.7.2 Slave Collision Detect

Collisions between transmitting slaves can occur during slave search activities by the master.

Very light collisions of (22..33) mA, which are equivalent to 2 or 3 transmitting slaves, are

electrically undetectable by master and slave. New master hardware with double current detect

can detect light collisons of (20..200) mA and then transmit a break (50 ms space) on the bus.

The slave can detect medium collisions of (70..500) mA, if this is a collision between a mark

and a space and if the slave supports this feature. Heavy collisions of (90..5000mA) will have

the effect of a break down of the bus voltage (power fail in the slave) and possibly a

shortcircuit in the master.

To avoid these consequences of (heavy) collisions new master have the feature of double

current detect with break signaling and switching off the bus in overcurrent states. There are

some means for the slaves to detect collisions and then stop transmitting:

1. Software based UART´s can test at the end of each Mark-Send-Bit whether the input is

really a mark. This guarantees a very fast detection of collisions, is simple to implement

and is strongly recommended for pure software UART.

2. A variation of the preceeding method is to test whether the bus voltage is mark after each

stop-bit. This is simple for a software UART, but very tricky for a hardware UART and

requires a master sending a break on collision detect.

3. A simple method for unbuffered hardware UART, but tricky for buffered hardware

UART, is to compare the transmitted with the received byte.

4. Another method, which requires a master with break collision detect, is a hardware UART

with break detect.

5. The baudrate of the communication process after a detected break will be 300 Baud ♣.

6.7 Special Slave Features 57

6.7.3 Use of the fabrication Number

(♣ new chapter)

The fabrication number is a serial number allocated during manufacture. It is part of the

variable data block (DIF = $0C and VIF = $78) and coded with 8 BCD packed digits (4 Byte).

Example:

68 15 15 68 header of RSP_UD telegram (length 1Fh=31d bytes)

08 02 72 C field = 08 (RSP), address 2, CI field 72H (var.,LSByte first)

78 56 34 12 identification number = 12345678

24 40 01 07 manufacturer ID = 4024h (PAD in EN 61107), generation 1, water

13 00 00 00 TC = 13h = 19d, Status = 00h, Signature = 0000h

0C 78 04 03 02 01 fabrication number = 01020304

9D 16 checksum and stopsign

The use of this number is recommended if the identification number is changeable. In this

case two or more slaves can get the same secondary adress and can not be uniquely selected.

The fabrication number together with manufacturer, version and medium field build an unique

number instaed. Suitable masters use this number for an enhanced selection method if two or

more slaves have the same secondary adress (see chapter 7.4).

6.7.4 Hex-Codes $A-$F in BCD-data fields

(♣ new chapter)

General description

1.) Standard Reference

EN1434 allows multi-digit BCD-coded datafields. The current standard does not contain

information about what happens if a non-BCD hex code ($A-$F) is detected by the master

software.

2.) Purpose of this proposal

a) Define the treatment of non BCD-digits in slave to master RSP_UD-telegrams

To fully define a master software including error treatment such a definition would be

desirable.

58 6 Application Layer

b) Utilize these codes for simplified error treatment by slave

The current user group proposal contains various techniques for signalling errors or abnormal

situations. Most of them are hard to implement on weak mikro-processors. Utilizing these

"illegal" codes $A to $F for signalling these states to the master would simplify the software

design of the slaves.

c) Anormal states of variables

• Value not available

This happens for example, if a fixed date value is not yet available, because the first fixed

date is in the future. The display at the meter or the remote PC should read "----".

• Device error

This could happen for a temperature variable, if the sensor is malfunctioning. The display

at the meter or a remote PC should signal some error code. Multiple error codes should be

supported.

• Soft overflow

Exceeding the upper count limit on integral values or the upper value limit on momentary

values should be signallable. For a wrap around carry of integral variables the display

should be consistent with old mechanical wrap around counters. In addition a wrap around

flag should be extractable.

• Soft underflow

Underflowing the lower count limit of 00 on integral values or a negative value on

momentary values should be signallable. For a wrap around carry of integral variables the

display should be consistent with old mechanical wrap around counters. In addition a wrap

around flag should be extractable.

• Simple visible error signalling

To simplify the design of slaves with integrated displays, the above mentioned non-BCD

states of the variables should be both transmittable in the form of suitable (Hex) codes but

also be displayable directly from the value codes of a 7-segment (usually LCD) display by

extending the normal ten entry BCD to 7-segment decoding table to either a dual 16-entry

or a single 32-entry decoding table where 16 entries are used for decoding the MSD (Most

Significant Digit) and the other 16 entries are used for the decoding for all other for all

other digits. For very weak mikroprocessors with a maximum of a single decoding table

with only 16-entries a compatible solution with decreased functionality is also presented.

6.7 Special Slave Features 59

New proposal

1.) Definition of hex code meanings

a) $A

Such a code in the MSD (Most significant digit) position signals a one digit value overflow

either of a number or due to an addition or increment carry. The display at the meter or a

remote PC should display a "0" at the appropriate display position. This makes the display

compatible with conventional counter rollover. In addition the leading digit can be treated by

the slave software simply as a hexadecimal digit instead of the BCD-coded other digits to

realize this function. Processing software in the master could convert this data digit to a value

of 10 in an extended length data field. In addition an appropriate application error code could

be generated if desired. If this hex code appears in any other digit position than the MSD, it

signals a value error of the complete data field. If an alternative display decoding table for the

digits other than the MSD is possible, this hex code should be displayed in these other digit

positions as the symbol "A". This would allow more flexible displayable error codes.

Example: A 4-digit BCD code of "A321" should be interpreted by the master software as

"10321" with an optional overrange VIFE-error code and displayed as 0321 on a 4-

digit only display.

b) $B

Such a code in the MSD digit position signals a two digit value overflow either of a number or

due to an addtion or increment carry. The display at the meter or a remote PC should display a

"1" at the appropriate display position. This makes the display compatible with conventional

counter rollover. In addition the leading digit can be treated by the slave software simply as a

hexadecimal digit instead of the BCD-coded other digits to realize this function. Processing

software could convert this data digit to a value of 11 in an extended length data field. In

addition an appropriate application error code could be generated if desired. If this hex code

appears in any other digit position than the MSD, it signals a value or availability error of the

complete data field. It should be displayed as the symbol "-".

Example: A 4-digit BCD code of "B321" should be interpreted by the master software as

"11321" with an optional overrange VIFE-error code and displayed as 1321 on a 4-

digit only display with digit selective decoding.

c) $C

Such a code in the MSD digit position signals a three digit value overflow either of a number

or due to an addition or increment carry. The display at the meter or a remote PC should

60 6 Application Layer

display a "2" at the appropriate display position. This makes the display compatible with

conventional counter rollover. In addition the leading digit can be treated by the slave

software simply as a hexadecimal digit instead of the BCD-coded other digits to realize this

function. Processing software could convert this data digit to a value of 12 in an extended

length data field. In addition an appropriate application error code could be generated if

desired. If this hex code appears in any other digit position than the MSD, it signals a value

error of the complete data field. It should be displayed as the symbol "C". Note that the

suggested interpretation of $A to $C in the MSD effectivly supports a 30% overrange guard

band against an undetected rollover and flexible error codes including the letters "A", "C", "E"

and "F".

Example: A 4-digit BCD code of "C321" should be interpreted by the master software as

"12321" with an optional overrange VIFE-error code and displayed as 2321 on a 4-

digit only display.

d) $D

Such a code in any digit position signals a general error of the complete data field. The display

at the meter or a remote PC should display a blank at the appropriate display position. Since

both an overflow from $C and an underflow from $E end in this out of range type error the

function of an out-of-range over/underflow can be implemented by simple hex arithmetic. It is

however recommended that the slave arithmetic checks this $D-code in the MSD before

incrementing or decrementing the value for integral variables to make such an error

irreversible if the slave does not expect such an over- or underflow.

e) $E

Such a code in the MSD digit position signals a two digit value underflow either of a number

or due to a subtraction or decrement borrow. The display at the meter or a remote PC should

display an "8" at the appropriate display position. This makes the display compatible with

conventional counter rollunder. In addition the leading digit can be treated by the slave

software simply as a hexadecimal digit instead of the BCD-coded other digits to realize this

function. Processing software could convert the data in the field to a negative value using 16´s

complement on the leading digit and tens complement at the other digits. In addition an

appropriate application error code could be generated if desired. If this hex code appears in

any other digit position than the MSD, it signals a value error of the complete data field. It

should be displayed as the symbol "E".

6.7 Special Slave Features 61

Example: A 4-digit BCD code of "E321" should be interpreted by the master software as

"- 1679" (F999-E321+1) with an optional underrange VIFE-error code and

displayed as 8321 on a 4-digit only display.

f) $F

Such a code in the MSD digit position signals an one digit value underflow either of a number

or due to a subtraction or decrement borrow. The display at the meter or a remote PC should

display an "9" at the appropriate display position. This makes the display compatible with

conventional counter rollunder. In addition the leading digit can be treated by the slave

software simply as a hexadecimal digit instead of the BCD-coded other digits to realize this

function. Processing software could convert the data in the field to a negative value using 16´s

complement on the leading digit and tens complement at the other digits. In addition an

appropriate application error code could be generated if desired. If an alternative display

decoding table for the digits other than the MSD is possible, this hex code should be displayed

in these other digit positions as the symbol "F". Note that the suggested interpretation of $E

and $F in the MSD effectivly supports a 20% underrange guard band against an undetected

rollunder for displays and flexible error displays if dual decoding tables are available. In

addition it allows a simplified coding for small negative values as often required for values

like temperature or flow rate.

Example: A 4-digit BCD code of "F321" should be interpreted by the master software as "-

0679" (F999-F321+1) with an optional underrange VIFE-error code and displayed

as 9321 on a 4-digit only display.

g) Combinations

If with the exception of the MSD all other digits are true BCD-digits ($0-$9) the value is

either considered as "Overflow" for the MSD hex codes $A to $C or as "Underflow" for the

MSD hex codes $E and $F or a general error for the MSD hex code $D.

The code $DB..BB in the data field is always considered as "not available". This is displayed

as " ----" (with a blank in the MSD). Any other non BCD-hex codes in one or several digits

other than the MSD is interpreted as an error for the complete data field. The error type is

formed from the characters "A", "C", "E", "F" (all corresponding to their hex code), "-", blank

and the digits 0-9. The display may show an identical error code if displaying the variable, but

the MSD digit on the display can contain only blank or the digits 0..9.

h) Decoding table for 2*16 entries (or 32 entries)

0 1 2 3 4 5 6 7 8 9 $A $B $C $D $E $F

MSD "0" "1" "2" "3" "4" "5" "6" "7" "8" "9" "0" "1" "2" " " "8" "9"

62 6 Application Layer

other digits "0" "1" "2" "3" "4" "5" "6" "7" "8" "9" "A" "-" "C" " " "E" "F"

i) Subset functions

A slave may utilize either non, a single, several or all suggested special functions and their

associated hex codes. A slave might utilize also a different number of hex code functions for

different data fields. A slave could also use different display implementations for the various

special functions and error displays but the suggested solution would simplify the operation of

the system, since the master display will be identical to the slave display for the value

associated with the appropriate data field.

2.) Subset for single 16-entry display decoding

a) Decoding table

0 1 2 3 4 5 6 7 8 9 $A $B $C $D $E $F

"0" "1" "2" "3" "4" "5" "6" "7" "8" "9" "0" "-" "C" " " "E" "9"

b) Overrange

The overrange feature should be limited to a 10% overrange ($A in MSD). A further

increment should lead directly to the MSD-error hex code $D, which should stop further

increment and decrement and generate a suitable error code in the other digits

c) Underrange

The underrange feature should be limited to a 10% underrange ($F in MSD). A further

decrement should lead directly to the MSD-error hex code $D, which should stop further

increment and decrement and generate a suitable error code in the other digits.

d) Error codes

Error codes may contain only the letters "C" and "E", blank, "-" and the digits 0-9.

e) Compatiblity

At the master side this subset realisation is completely compatible and transparent to the full

implementation.

7.1 Selection and Secondary Addressing 63

7 Network Layer

The network layer takes care of choosing the best transmission route between the

communication parties in a network. We define that the network layer in the M-Bus protocol

"connects" a slave with a certain secondary address to the bus and and associates it with the

primary address of 253 ($FD). So the number of 250 addresses (primary) is extended by the

network layer associating a selected slave to this address 253. The network layer is only

enabled by a SND_UD with CI_Field $52 / $56 to address 253.

7.1 Selection and Secondary Addressing

When addressing in the data link layer with the help of the A-Field, the problem of the address

allocation arises. The addresses are normally set to a value of 0 by the manufacturer of the

meters, in order to designate them as unconfigured slaves. A very laborious method of address

allocation consists of setting the addresses when installing the slaves, for example with DIP

switches. A further method of address allocation is to determine the bus addresses when

connecting the equipments to the bus with the master software. This sends a command for

address allocation (see 6.4.2) to the address 0. In this case the slaves must however all be

successively connected to the bus, which very much gets in the way of a simple installation

procedure.

When however addressing in the network layer these disadvantages are avoided and the

address region is essentially extended beyond the number of 250 with primary addressing

(A-Field). The addressing of the slaves takes place with secondary addressing with the help of

the following so-called selection:

68h 0Bh 0Bh 68h 53h FDh 52h ID1-4 Man 1-2 Gen Med CS 16h

Fig. 29 Structure of a telegram for selecting a slave (mode 1)

The master sends a SND_UD with the control information 52h (Mode 1) or 56h (Mode 2) to

the address 253 (FDh) and fills the specific meter secondary address (identification number,

manufacturer, version and medium) with the values of the slave which is to be addressed. The

address FDh and the control information 52h / 56h are the indication for the slaves to compare

the following secondary addresses with their own, and to change into the selected state should

they agree. In this case the slave must answer the selection with an acknowledgement (E5h),

otherwise the slave doesn´t send an answer. "Selected state" means that this slave will be

addressed at the following commands (e.g. REQ_UD) with the bus address FDh and in this

example will reply with RSP_UD. In other words the network layer has associated this slave

with the address FDh.

64 7 Network Layer

During selection individual positions of the secondary addresses can be occupied with

wildcards (Fh). Such a Wildcard means that this position will not be taken account of during

selection, and that the selection will be limited to specific positions, in order to address

complete groups of slaves (Multicasting). In the identification number each individual digit

can be wildcarded by a wildcard nibble Fh while the fields for manufacturer, version and

medium can be wildcarded by a wildcard byte FFh.

The state of the selection remains unchanged until the slave is deselected with a selection

command (as described above) with non-matching secondary addresses, or a SND_NKE to

address 253. The slave, which uses mode 1 for multibyte records, will be selected by a

telegram with the CI-Field 52h and the right secondary address, but it will be deselected by a

telegram with the CI-Field 56h and any secondary address.

A Slave with implemented primary and secondary addressing should also answer telegrams to

his primary address. A Slave with only secondary addressing should occupy the address field

in the RSP_UD telegram with $FD to signal that it will not participate in primary addressing.

7.2 FCB-Bit and Selection
(♣ chapter 7.2 reworked)

FCB-Implementation slave

A slave with implemented secondary addressing and with implemented FCB-administration

must have an additional set of 0, 1 or 2 separate "Last Received FCB"-memery Bit(s) for all

communication via the pseudo primary address 253 ($FD). If it can communicate also

alternatively over some other primary address (exept the special addresses 254 and 255) an

additional set of 0, 1 or 2 "Last received FCB"-memry bit(s) for each of these primary

addresses is required. A valid selection telegram will not only set the internal selection bit but

will also clear all 0, 1 or 2 internal "Last received FCB"-memory bit(s) associated with

secondary addressing via the pseudo primary address 253 ($FD). The master will start the

communication (REQ_UD2 or SND_UD) after any selection telegram (CI=$52 or $56) with

the FCV-Bit set and the FCB-Bit set. If a slave has more than one alternative secondary

identification, only a single set of 0, 1 or 2 "Last received FCB"-memory bit(s) for all

secondary addresses is required.

FCB-Implementation master

The master must implement a separate pair of "Next FCB image"-Bits for pseudo primary

address 253 ($FD) as for each other primary address. Although these "Next FCB image"-bits

might be used for many slaves, no confusion exists, since for accessing another slave a

7.3 Searching for Installed Slaves 65

selection telegram is required which will define the future FCB sequence both for slave and

master.

7.3 Searching for Installed Slaves

Primary Addresses

To read out all installed slaves the master software must know all the slaves, which are

connected to the bus. Therefore the software searches for slaves with primary adressing by

sending a REQ_UD2 to all allowed adresses (1..250) with all available baudrates. The master

notes used primary addresses with the respective baudrates.

Secondary Addresses

The secondary addressing described in the preceding section draws attention to the problem of

determining the secondary addresses of slaves connected to the bus. The master can after this

read out the slaves making use of secondary addresses with previous selection. Testing all

possible identification numbers with the master software would take years, since the

identification number offers millions of combinations. For this reason, a procedure was

developed for the rapid and automatic determination of already installed slaves:

Wildcard searching procedure

The following wildcard searching procedure uses the occupation of individual parts of the

secondary address with wildcards (Fh) for selection:

In this case with the identification number (BCD) each individual position, and by

manufacturer, version and medium (binary coding), only one complete byte, can be occupied

with wildcards. The master begins the selection using a SND_UD with the control

information 52h (Mode 1), and occupies all positions in the identification number, except the

top one, with wildcards. The top position is run through in ten selections from 0 to 9

(0FFFFFFF to 9FFFFFFF).

If after such a selection the master receives no acknowledgement, it then goes to the next

selection. If the master receives an E5h, it then sends a REQ_UD2 and learns the secondary

address of the slaves from the reply telegram, as long as no collision occurs. If there is a

collision after the selection or the REQ_UD2, the master varies the next positions and holds

the existing one. If there is a collision, for example at 5FFFFFFF, the selection is run through

from 50FFFFFF to 59FFFFFF. If in this case collisions again occur, then a change is made to

a variation of the next position. After running through a complete position, the next higher

position is processed up to 9.

66 7 Network Layer

With this Wildcard searching procedure, it will be seen that at least the top position must be

run through in order to reach all slaves. Running through further positions may be necessary,

depending on the number of the slaves and the distribution of the identification numbers. This

procedure allows a statement of the maximum number of selections in relation to the number

of slaves, but as disadvantage frequent collisions, which occur, should be mentioned. The

wildcard searching procedure must be performed for all used baudrates and both byte

sequences (mode 1 and 2).

The search procedure can be extended with searching for manufacturer, generation and finally

media to find slaves, which have the same identification number. It is also possible to search

for all slaves of a certain manufacturer or all slaves of a certain media by setting the

corresponding value.

The company Aquametro AG has simulated such a search to find the minimum, the average

and the maximum number of selections as a function of the number of slaves. For the

minimum number of attempts the optimum distribution of the identification numbers was

chosen, for the maximum number the most unfavourable, and for the average number of

attempts a random distribution. The following diagram shows the result of these calculations:

Fig. 30 Number of Selections with Wildcard Searching Procedure

7.3 Searching for Installed Slaves 67

Instructions for implementation of Wildcard Search

The following program flow diagram shows the realization of the Wildcard searching

procedure, whereby the search is made only with the identification number. The codes for

manufacturer, version and medium are in general specified with wildcards, but can be changed

by the user in order (for example) to locate all meters from a particular manufacturer. In order

to avoid the categorisation by a factor of eight of the "For-To" loops for the eight positions,

the array "Value" is defined with 8 byte numbers, which are intended to define the contents of

the positions. The digit number of the identification number which is presently running is

noted in the variable "Pos" of type byte.

SlaveSearch

Pos := 1
Value[1] := 0

REQ_UD2

Value[Pos]<10?

Select

Collision ?

Answer ?

Pos < 8 ?

inc Pos by 1
Value [Pos] :=0 Pos > 1 ?

End dec Pos by 1

learn secondary
address inc Value [Pos] by 1

Yes

No

Yes No

Yes

No
No

No

Yes

Yes

ID = Pos 1..8

(PAdr = 253)

Value [Pos+1 .. 8] := Fh

inc Value [Pos] by 1

Fig. 31 Flow Diagram for Slave Search with Wildcards

68 7 Network Layer

The routine begins at the first position, and implements the following actions for the value of

this position from 0 to 9:

• Selection with the ID-Nr. Pos 1, Pos 2,, Pos 8

• if no reply, Value [Pos] is raised by 1

• if there is a reply, a REQ_UD2 is sent to address 253, and if the telegram is correctly

received the secondary address is learnt and the Value [Pos] raised by 1

• if there is a collision a jump is made to the next position (Pos increased by 1), as long as

the last position has not yet been reached

• after going through a complete position from 0 to 9 the subroutine proceeds to the next

lower position, or ends the search if the position Nr. 1 has already been processed

Example

The next figure shows an example for secondary addresses in order from top to bottom, as

they will be found by the master software:

No. Identification-Nr. Manufacturer. (hex.) Version (hex.) Media (hex.)

1 14491001 1057 01 06

2 14491008 4567 01 06

3 32104833 2010 01 02

4 76543210 2010 01 03

Fig. 32 Secondary Addresses found with a Wildcard Search of Four Slaves

Search Process:

1. Start with ID = 0FFFFFFF : no reply

2. ID = 1FFFFFFF : collision between Nr.1 and Nr.2

3. ID = 10FFFFFF, 11FFFFFF, 12FFFFFF, 13FFFFFF : no reply

4. ID = 14FFFFFF : collision between Nr.1 and Nr.2

5. Repeated steps 3 to 4 up to the ID = 1449100F

6. Learn ID = 14491001 and 14491008

7. Go backwards to 19999999

8. ID = 2FFFFFFF : no reply

9. ID = 3FFFFFFF : learn ID = 32104833

10. ID = 4FFFFFFF, 5FFFFFFF, 6FFFFFFF : no reply

11. ID = 7FFFFFFF : learn ID = 76543210

12. ID = 8FFFFFFF, 9FFFFFFF : no reply

13. End of the Search

7.4 Generalized Selection Procedure 69

7.4 Generalized Selection Procedure

For including new or restructed identification parameters into a selection procedure an

enhanced definition of the selection telegram (CI=$52/$56) is suggested:

After the 8 byte of the fixed selection header may also follow standard records with data. In

this case only those meters will be selected, where in addition to the fixed header all record

data agree. In most but not all cases this means that the DIF and parts of the VIF (not

exponent) must match. Again wildcard rules apply to the record data (digit wildcard for BCD-

coded data and byte wildcard for binary or string data).

With some new defined VIF-codes (extension) and this generalized selection it will be

possible to select slaves using e.g. longer identification numbers, customer, customer location

and more information. See chapter 8.4.4 for this new VIF-Codes. Two useful examples from

the primary table for VIF´s are the “Fabrication No.“ and “Bus Address“.

Enhanced selection with fabrication number ♣

The identification number is a customer number and can be changed by the master. Therefore

it can be possible that two slaves have the same secondary adress. For this reason the selection

telegram can be extended by a fabrication number to devide such slaves. This number is a

serial number allocated during manufacture, coded with 8 BCD packed digits (4 Byte) like the

identification number, and thus runs from 00000000 to 99999999.

The following figure shows the structure of an enhanced selection telegram released by the

master.

68h 11h 11h 68h 53h FDh 52h ID1-4 Man1-2 Gen Med 0Ch 78h Fab1-4 CS 16h

Fig. 33 Structure of a telegram for enhanced selection (mode 1)

After the field medium the new data is given in form of a structured datarecord with DIF=0Ch

and VIF=78h. Parts of the fabrication number (Fab1..Fab4) can be occupied with wildcards

(Fh).

If a fabrication number exists the slave should add this data to the variable data blocks in

every RSP-UD telegram. If the fabrication number and enhanced selection is not implemented

in a slave this device will not confirm the enhanced selection telegram and will be deselected.

Enhanced selection should be used only if the normal kind of selection is not successful.

70 8 Appendix

8 Appendix

8.1 Alarm Protocol

The formerly described method for an alarm protocol (see diploma work of Andreas Steffens

"Eigenschaften und Anwendungen des M-Bus") was based on time slices for each of the

maximum 64 alarm devices. This alarm protocol has not been standardized.

We now suggest to return to standard alarm protocol which conforms to the standard IEC 870-

2:

The master software polls the maximum 250 alarm devices by requesting time critical data

(REQ_UD1 to adresses 1 .. 250). A slave can transmit either a single character

acknowledgement E5h signalling no alarm or a RSP_UD with the CI-Field 71h to report an

alarm state.

68h 04h 04h 68h 08h Adr 71h Alarm State CS 16h

Fig. 34 Telegram for an Alarm-Respond

The alarm state is coded with data type D (boolean, in this case 8 bit). Set bits signal alarm

bits or alarm codes. The meaning of these bits is manufacturer specific.

The timeout for time critical communication must be set to 11..33 bit periods to ensure a fast

poll of all alarm devices. With a baudrate of 9600 Bd and all 250 slaves reporting an alarm

just in time before a timeout occurs each slave will be polled in periods of maximum 5.5

seconds. This seems to be fast enough for alarms in building control systems and other

applications. For faster alarm systems the number of alarm sensors could be limited to 63

(reducing the worst case overall signal delay to less than 1.5 sec or increase the transmission

speed to 38400 Bd (with the new repeater hardware) and achieve the same speed for up to 250

devices.

The functionality of the FCB- and FCV-Bit should be fully implemented in this alarm

protocol to ensure that one-time alarms are safely transmitted to the master. If the slave has

reported an one-time alarm and the next REQ_UD1 has a toggled FCB (with FCV=1) the

slave will answer with an E5h signalling no alarm. Otherwise it will repeat the last alarm

frame to avoid that the alarm message gets lost.

This new alarm protocol has the advantages of being standardized in IEC 870-2, simple

implementation in slaves and master, fast poll cycles and using almost (with the exception of

shorter timeout) the normal protocol. In addition it is allowed under EN1434-3 which allows

all other types of communication of IEC-870-5-2.

8.2 Coding of Data Records 71

8.2 Coding of Data Records

The standard IEC 870-5-4 defines the following data types for usage inside the application

layer:

Type A = Unsigned Integer BCD := XUI4 [1 to 4] <0 to 9 BCD>

27 26 25 24 23 22 21 20

digit 10 digit 1 1UI4 [1 to 4] <0 to 9 BCD> := digit 100

8 4 2 1 8 4 2 1 2UI4 [5 to 8] <0 to 9 BCD> := digit 101

...

8 4 2 1 8 4 2 1 XUI4 [5 to 8] <0 to 9 BCD> := digit 10X-1

Type B = Binary Integer := I[1..X] <-2X-1 to +2X-1-1>

27 26 25 24 23 22 21 20 1B1 [X] := S=Sign: S<0> := positive

... ... S<1> := negative

S 2X-2 2X-8 negative values in two´s complement

Type C = Unsigned Integer := UI[1 to X] <0 to 2X-1>

27 26 25 24 23 22 21 20 UI8 [1 to 8] <0 to 255>

... ...

2X-1 2X-8

Type D = Boolean (1 bit binary information) := XB1 B1[i] <0 to 1>

27 26 25 24 23 22 21 20 XB1: B1[i] <0 to 1>

... ... B1[i] <0> := false

2X-1 2X-8 B1[i] <1> := true

72 8 Appendix

Type E = Compound CP16 (types and units information)

27 26 25 24 23 22 21 20 1UI6[1 to 6] <0 to 63> := physical unit 1

215 214 213 212 211 210 29 28 1UI6[9 to 14] <0 to 63> := physical unit 2

1UI4[7,8,15,16] <0 to 15> := measured media

The following data types can only be used with the variable data structure:

Type F = Compound CP32: Date and Time

Type G: Compound CP16: Date

27 26 25 24 23 22 21 20 day: UI5 [1 to 5] <1 to 31>

215 214 213 212 211 210 29 28 month: UI4 [9 to 12] <1 to 12>

year: UI7[6 to 8,13 to 16] <0 to 99>

min: UI6 [1 to 6] <0 to 59>

hour: UI5 [9 to13] <0 to 23>

day: UI5 [17 to 21] <1 to 31>

month:UI4 [25 to 28] <1 to 12>

year: UI7[22 to 24,29 to 32] <0 to 99>

IV: B1[8] {time invalid}: IV<0> :=

valid,

IV>1> := invalid

SU: B1[16] {summer time}:

SU<0> := standard time,

SU<1> := summer time

RES1: B1[7] {reserved}: <0>

RES2: B1[14] {reserved}: <0>

RES3: B1[15] {reserved}: <0>

27 26 25 24 23 22 21 20

215 214 213 212 211 210 29 28

223 222 221 220 219 218 217 216

231 230 229 228 227 226 225 224

8.2 Coding of Data Records 73

Type H: Floating point according to IEEE-standard

"Short floating Point Number IEEE STD 754" = R32IEEESTD754

R32IEEESTD754 := R32.23 {Fraction, Exponent, Sign}

Fraction = F := UI23 [1to 23] <0 to 1-2-23>

Exponent = E := UI8 [24 to 31] <0 to 255>

Sign = S := BS1 [32] S<0> = positive

S <1> = negative

F <0> and E <0> := (-1) S ∗ 0 = ± zero

F <≠0> and E <0> := (-1) S ∗ 2E-126(0.F) = denormalized numbers

E <1 to 254> := (-1) S ∗ 2E-127(1.F) = normalized numbers

F <0> and E <255> := (-1) S ∗ ∞ = ± infinite

F <≠0> and E <255> := NaN = not a number, regardless of S

bits 8 7 6 5 4 3 2 1

octet 1 F = Fraction

2-16 2-17 2-18 2-19 2-20 2-21 2-22 2-23

octet 2 F = Fraction

2-8 2-9 2-10 2-11 2-12 2-13 2-14 2-15

octet 3 E (LSB) F = Fraction

2-0 2-1 2-2 2-3 2-4 2-5 2-6 2-7

octet 4 Sign E = Exponent

S 27 26 25 24 23 22 21

The following ranges are specified by IEE Std 754-1985 for floating point arithmetics:

Range: (-2128 + 2104) to (+2128 - 2104), that is -3.4∗1038 to +3.4*1038

smallest negative number: -2-149, that is: -1.4∗10-45

smallest positive number: +2-149, that is: + 1.4∗10-45

74 8 Appendix

8.3 Tables for Fixed Data Structure

8.3.1 Measured Medium Fixed Structure

Value Field Medium/Unit Medium

hexadecimal Bit 16 Bit 15 Bit 8 Bit 7

0 0 0 0 0 Other

1 0 0 0 1 Oil

2 0 0 1 0 Electricity

3 0 0 1 1 Gas

4 0 1 0 0 Heat

5 0 1 0 1 Steam

6 0 1 1 0 Hot Water

7 0 1 1 1 Water

8 1 0 0 0 H.C.A.

9 1 0 0 1 Reserved

A 1 0 1 0 Gas Mode 2

B 1 0 1 1 Heat Mode 2

C 1 1 0 0 Hot Water Mode 2

D 1 1 0 1 Water Mode 2

E 1 1 1 0 H.C.A. Mode 2

F 1 1 1 1 Reserved

Notes:

1. Record Medium/Unit is always least significant byte first.

2. H.C.A. = Heat Cost Allocator

3. Media from "Gas Mode2" to "H.C.A. Mode2" are defined additionally to EN1434-3 for

some existing meters with CI-Field 73h (intentionally mode1), which transmit the

multibyte records with high byte first in contrast to the CI-Field. The master must know

that these media codes mean mode 2 or high byte first. Further use of these codes for

"pseudo media" is not allowed for new developments.

8.3 Tables for Fixed Data Structure 75

8.3.2 Table of Physical Units

Unit MSB..LSB
Hex code

share
Byte 7/8

Unit MSB..LSB
Hex code

share
Byte 7/8

h,m,s 000000 00 MJ/h 100000 20

D,M,Y 000001 01 MJ/h * 10 100001 21

Wh 000010 02 MJ/h * 100 100010 22

Wh * 10 000011 03 GJ/h 100011 23

Wh * 100 000100 04 GJ/h * 10 100100 24

kWh 000101 05 GJ/h * 100 100101 25

kWh * 10 000110 06 ml 100110 26

kWh * 100 000111 07 ml * 10 100111 27

MWh 001000 08 ml * 100 101000 28

MWh * 10 001001 09 l 101001 29

MWh * 100 001010 0A l * 10 101010 2A

kJ 001011 0B l * 100 101011 2B

kJ * 10 001100 0C m3 101100 2C

kJ * 100 001101 0D m3 * 10 101101 2D

MJ 001110 0E m3 * 100 101110 2E

MJ * 10 001111 0F ml/h 101111 2F

MJ * 100 010000 10 ml/h * 10 110000 30

GJ 010001 11 ml/h * 100 110001 31

GJ * 10 010010 12 l/h 110010 32

GJ * 100 010011 13 l/h * 10 110011 33

W 010100 14 l/h * 100 110100 34

W * 10 010101 15 m3/h 110101 35

W * 100 010110 16 m3/h * 10 110110 36

kW 010111 17 m3/h * 100 110111 37

kW * 10 011000 18 °C * 10-3 111000 38

kW * 100 011001 19 units for HCA 111001 39

MW 011010 1A reserved 111010 3A

MW * 10 011011 1B reserved 111011 3B

MW * 100 011100 1C reserved 111100 3C

kJ/h 011101 1D reserved 111101 3D

kJ/h * 10 011110 1E same but historic 111110 3E

kJ/h * 100 011111 1F without units 111111 3F

76 8 Appendix

8.4 Tables for Variable Data Structure

8.4.1 Measured Medium Variable Structure

Medium Code bin.
Bit 7 .. 0

Code
hex.

Other 0000 0000 00

Oil 0000 0001 01

Electricity 0000 0010 02

Gas 0000 0011 03

Heat (Volume measured at return temperature: outlet) 0000 0100 04

Steam 0000 0101 05

Hot Water 0000 0110 06

Water 0000 0111 07

Heat Cost Allocator. 0000 1000 08

Compressed Air 0000 1001 09

Cooling load meter (Volume measured at return temperature: outlet) ♣ 0000 1010 0A

Cooling load meter (Volume measured at flow temperature: inlet) ♣ 0000 1011 0B

Heat (Volume measured at flow temperature: inlet) 0000 1100 0C

Heat / Cooling load meter ♣ 0000 1101 OD

Bus / System 0000 1110 0E

Unknown Medium 0000 1111 0F

Reserved 10 to 15

Cold Water 0001 0110 16

Dual Water 0001 0111 17

Pressure 0001 1000 18

A/D Converter 0001 1001 19

Reserved 20 to FF

8.4 Tables for Variable Data Structure 77

8.4.2 Data Field Codes

Length in Bit Code Meaning Code Meaning

0 0000 No data 1000 Selection for Readout

8 0001 8 Bit Integer 1001 2 digit BCD

16 0010 16 Bit Integer 1010 4 digit BCD

24 0011 24 Bit Integer 1011 6 digit BCD

32 0100 32 Bit Integer 1100 8 digit BCD

32 / N 0101 32 Bit Real 1101 variable length

48 0110 48 Bit Integer 1110 12 digit BCD

64 0111 64 Bit Integer 1111 Special Functions

Variable Length:

With data field = `1101b` several data types with variable length can be used. The length of

the data is given with the first byte of data, which is here called LVAR.

LVAR = 00h .. BFh : ASCII string with LVAR characters

LVAR = C0h .. CFh : positive BCD number with (LVAR - C0h) • 2 digits

LVAR = D0h .. DFH : negative BCD number with (LVAR - D0h) • 2 digits

LVAR = E0h .. EFh : binary number with (LVAR - E0h) bytes

LVAR = F0h .. FAh : floating point number with (LVAR - F0h) bytes [to be

defined]

LVAR = FBh .. FFh : Reserved

Special Functions (data field = 1111b):

DIF Function

0Fh Start of manufacturer specific data structures to end of user data

1Fh Same meaning as DIF = 0Fh + More records follow in next telegram

2Fh Idle Filler (not to be interpreted), following byte = DIF

3Fh..6Fh Reserved

7Fh Global readout request (all storage#, units, tariffs, function fields)

78 8 Appendix

8.4.3 Codes for Value Information Field (VIF)

The first block of the table contains integral values, the second typically averaged values, the

third typically instantaneous values and the fourth block contains parameters (E: extension

bit).

Coding Description Range Coding Range

E000 0nnn Energy 10(nnn-3) Wh 0.001Wh to 10000Wh

E000 1nnn Energy 10(nnn) J 0.001kJ to 10000kJ

E001 0nnn Volume 10(nnn-6) m3 0.001l to 10000l

E001 1nnn Mass 10(nnn-3) kg 0.001kg to 10000kg

E010 00nn On Time

nn = 00 seconds
nn = 01 minutes
nn = 10 hours
nn = 11 days

E010 01nn Operating Time coded like OnTime

E010 1nnn Power 10(nnn-3) W 0.001W to 10000W

E011 0nnn Power 10(nnn) J/h 0.001kJ/h to 10000kJ/h

E011 1nnn Volume Flow 10(nnn-6) m3/h 0.001l/h to 10000l/h

E100 0nnn Volume Flow ext. 10(nnn-7) m3/min 0.0001l/min to 1000l/min

E100 1nnn Volume Flow ext. 10(nnn-9) m3/s 0.001ml/s to 10000ml/s

E101 0nnn Mass flow 10(nnn-3) kg/h 0.001kg/h to 10000kg/h

E101 10nn Flow Temperature 10(nn-3) °C 0.001°C to 1°C

E101 11nn Return Temperature 10(nn-3) °C 0.001°C to 1°C

E110 00nn Temperature Difference 10(nn-3) K 1mK to 1000mK

E110 01nn External Temperature 10(nn-3) °C 0.001°C to 1°C

E110 10nn Pressure 10(nn-3) bar 1mbar to 1000mbar

E110 110n Time Point
n = 0 date
n = 1 time & date

data type G
data type F

E110 1110 Units for H.C.A. dimensionless

E110 1111 Reserved

E111 00nn Averaging Duration coded like OnTime

E111 01nn Actuality Duration coded like OnTime

E111 1000 Fabrication No

E111 1001 (Enhanced) see chapter 6.4.2 ♣

E111 1010 Bus Address data type C (x=8)

8.4 Tables for Variable Data Structure 79

VIF-Codes for special purposes:

Coding Description Purpose

1111 1011 Extension of VIF-codes true VIF is given in the first VIFE and is coded using

table 8.4.4 b) (128 new VIF-Codes)

E111 1100 VIF in following string

(length in first byte)
allows user definable VIF´s (in plain ASCII-String) *

1111 1101 Extension of VIF-codes true VIF is given in the first VIFE and is coded using

table 8.4.4 a) (128 new VIF-Codes)

E111 1110 Any VIF used for readout selection of all VIF´s

(see chapter 6.4.3)

E111 1111 Manufacturer Specific VIFE´s and data of this block are manufacturer specific

Note:

∗ Coding the VIF in an ASCII-String in combination with the data in an ASCII-String

(datafield in DIF = 1101 b) allows the representation of data in a free user defined

form.

80 8 Appendix

8.4.4 Extension of primary VIF-Codes

If the VIF contains an extension indicator (VIF = $FD or $FB) the true VIF is contained in the

first VIFE.

a) Codes used with extension indicator $FD

Coding Description Group

E000 00nn
Credit of 10nn-3 of the nominal local legal

currency units Currency Units

E000 01nn
Debit of 10nn-3 of the nominal local legal

currency units

E000 1000 Access Number (transmission count)

E000 1001 Medium (as in fixed header)

E000 1010 Manufacturer (as in fixed header)

E000 1011 Parameter set identification Enhanced Identification

E000 1100 Model / Version

E000 1101 Hardware version #

E000 1110 Firmware version #

E000 1111 Software version #

E001 0000 Customer location

E001 0001 Customer

E001 0010 Access Code User

E001 0011 Access Code Operator Implementation of all

E001 0100 Access Code System Operator TC294 WG1 requirements

E001 0101 Access Code Developer (improved selection ..)

E001 0110 Password

E001 0111 Error flags (binary)

E001 1000 Error mask

E001 1001 Reserved

E001 1010 Digital Output (binary)

E001 1011 Digital Input (binary)

E001 1100 Baudrate [Baud]

E001 1101 response delay time [bittimes]

E001 1110 Retry

E001 1111 Reserved

8.4 Tables for Variable Data Structure 81

Coding Description Group

E010 0000 First storage # for cyclic storage

E010 0001 Last storage # for cyclic storage

E010 0010 Size of storage block

E010 0011 Reserved

E010 01nn Storage interval [sec(s)..day(s)] � Enhanced storage

E010 1000 Storage interval month(s) management

E010 1001 Storage interval year(s)

E010 1010 Reserved

E010 1011 Reserved

E010 11nn Duration since last readout [sec(s)..day(s)] �

E011 0000 Start (date/time) of tariff �

E011 00nn Duration of tariff (nn=01 ..11: min to days)

E011 01nn Period of tariff [sec(s) to day(s)] �

E011 1000 Period of tariff months(s) Enhanced tariff

E011 1001 Period of tariff year(s) management

E011 1010 dimensionless / no VIF

E011 1011 Reserved

E011 11xx Reserved

E100 nnnn 10nnnn-9 Volts electrical units

E101 nnnn 10nnnn-12 A

82 8 Appendix

Coding Description Group

E110 0000 Reset counter

E110 0001 Cumulation counter

E110 0010 Control signal

E110 0011 Day of week

E110 0100 Week number

E110 0101 Time point of day change

E110 0110 State of parameter activation

E110 0111 Special supplier information

E110 10pp Duration since last cumulation

[hour(s)..years(s)]�

E110 11pp Operating time battery

[hour(s)..years(s)]�

E111 0000 Date and time of battery change

E111 0001

to

E111 1111

Reserved

Notes:

� nn = 00 second(s)
01 minute(s)
10 hour(s)
11 day(s)

� The information about usage of data type F (date and time) or data type G (date) can

be derived from the datafield (0010b: type G / 0100: type F).

� pp = 00 hour(s)
01 day(s)
10 month(s)
11 year(s)

8.4 Tables for Variable Data Structure 83

b) Codes used with extension indicator $FB

Coding Description Range Coding Range

E000 000n Energy 10(n-1) MWh 0.1MWh to 1MWh

E000 001n Reserved

E000 01nn Reserved

E000 100n Energy 10(n-1) GJ 0.1GJ to 1GJ

E000 101n Reserved

E000 11nn Reserved

E001 000n Volume 10(n+2) m3 100m3 to 1000m3

E001 001n Reserved

E001 01nn Reserved

E001 100n Mass 10(n+2) t 100t to 1000t

E001 1010 to

E010 0000

Reserved

E010 0001 Volume ♣ 0,1 feet^3

E010 0010 Volume ♣ 0,1 american gallon

E010 0011 Volume 1 american gallon

E010 0100 Volume flow ♣ 0,001 american gallon/min

E010 0101 Volume flow 1 american gallon/min

E010 0110 Volume flow 1 american gallon/h

E010 0111 Reserved

E010 100n Power 10(n-1) MW 0.1MW to 1MW

E010 101n Reserved

E010 11nn Reserved

E011 000n Power 10(n-1) GJ/h 0.1GJ/h to 1GJ/h

E011 0010 to

E101 0111

Reserved

E101 10nn Flow Temperature 10(nn-3) °F 0.001°F to 1°F

E101 11nn Return Temperature 10(nn-3) °F 0.001°F to 1°F

E110 00nn Temperature Difference 10(nn-3) °F 0.001°F to 1°F

E110 01nn External Temperature 10(nn-3) °F 0.001°F to 1°F

E110 1nnn Reserved

E111 00nn Cold / Warm Temperature Limit 10(nn-3) °F 0.001°F to 1°F

E111 01nn Cold / Warm Temperature Limit 10(nn-3) °C 0.001°C to 1°C

E111 1nnn cumul. count max power ♣ 10(nnn-3) W 0.001W to 10000W

84 8 Appendix

8.4.5 Codes for Value Information Field Extension (VIFE)

The following values for VIFE´s are defined for an enhancement of VIF´s other than $FD and

$FB:

VIFE-Code Description

E00x xxxx Reserved for object actions (master to slave): see table on page 75
or for error codes (slave to master): see table on page 74

E010 0000 per second

E010 0001 per minute

E010 0010 per hour

E010 0011 per day

E010 0100 per week

E010 0101 per month

E010 0110 per year

E010 0111 per revolution / measurement

E010 100p increment per input pulse on input channel #p

E010 101p increment per output pulse on output channel #p

E010 1100 per liter

E010 1101 per m3

E010 1110 per kg

E010 1111 per K (Kelvin)

E011 0000 per kWh

E011 0001 per GJ

E011 0010 per kW

E011 0011 per (K*l) (Kelvin*liter)

E011 0100 per V (Volt)

E011 0101 per A (Ampere)

E011 0110 multiplied by sek

E011 0111 multiplied by sek / V

E011 1000 multiplied by sek / A

E011 1001 start date(/time) of � �

E011 1010 VIF contains uncorrected unit instead of corrected unit

E011 1011 Accumulation only if positive contributions

E011 1100 Accumulation of abs value only if negative contributions

E011 1101 to

E011 1111
Reserved

8.4 Tables for Variable Data Structure 85

VIFE-Code Description

E100 u000 u=1: upper, u=0: lower limit value

E100 u001 # of exceeds of lower u=0) / upper (U=1) limit

E100 uf1b Date (/time) of: b=0: begin, b=1: end of, f=0: first, f=1: last,
� u=0: lower, u=1: upper limit exceed

E101 ufnn Duration of limit exceed (u,f: as above, nn=duration)

E110 0fnn Duration of � (f: as above, nn=duration)

E110 1x0x Reserved

E110 1f1b Date (/time) of � � (f,b: as above)

E111 0nnn Multiplicative correction factor: 10nnn-6

E111 10nn Additive correction constant: 10nn-3 • unit of VIF (offset)

E111 1100 Reserved

E111 1101 Multiplicative correction factor: 103

E111 1110 future value

E111 1111 next VIFE's and data of this block are maufacturer specific

Notes:

� “Date(/time) of“ or “Duration of“ relates to the information which the whole data

record header contains.

� The information about usage of data type F (date and time) or data type G (date) can

be derived from the datafield (0010b: type G / 0100: type F).

86 8 Appendix

VIFE-Codes for reports of record errors (slave to master):

VIFE-Code Type of Record Error Error Group

E000 0000 None

E000 0001 Too many DIFE´s

E000 0010 Storage number not implemented

E000 0011 Unit number not implemented

E000 0100 Tariff number not implemented DIF Errors

E000 0101 Function not implemented

E000 0110 Data class not implemented

E000 0111 Data size not implemented
E000 1000 to
E000 1010 Reserved

E000 1011 Too many VIFE´s

E000 1100 Illegal VIF-Group

E000 1101 Illegal VIF-Exponent VIF Errors

E000 1110 VIF/DIF mismatch

E000 1111 Unimplemented action
E001 0000 to

E001 0100 Reserved

E001 0101 No data available (undefined value)

E001 0110 Data overflow

E001 0111 Data underflow

E001 1000 Data error Data Errors
E001 1001 to

E001 1011 Reserved

E001 1100 Premature end of record
E001 1101

to
E001 1111

Reserved
Other Errors

8.4 Tables for Variable Data Structure 87

VIFE-Codes for object actions (master to slave):

VIFE-Code Action Explanation

E000 0000 Write (Replace) replace old with new data

E000 0001 Add Value add data to old data

E000 0010 Subtract Value subtract data from old data

E000 0011 OR (Set Bits) data OR old data

E000 0100 AND data AND old data

E000 0101 XOR (Toggle Bits) data XOR old data

E000 0110 AND NOT (Clear Bits) NOT data AND old data

E000 0111 Clear set data to zero

E000 1000 Add Entry create a new data record

E000 1001 Delete Entry delete an existing data record

E000 1010 Reserved

E000 1011 Freeze Data freeze data to storage no.

E000 1100 Add to Readout-List add data record to RSP_UD

E000 1101 Delete from Readout-List delete data record from RSP_UD

E000 111x Reserved

E001 xxxx Reserved

Note:

The object action "write / replace" (VIFE = E000 0000) is the default and is assumed if there

is no VIFE with an object action for this record.

88 8 Appendix

8.5 References

[1] Färber, G. : Bussysteme, R.Oldenbourg Verlag München Wien, 1987

[2] Gabele, E., Kroll, M., Kreft, W. : Kommunikation in Rechnernetzen, Springer Verlag

Heidelberg, 1991

[3] Steffens, Andreas : Diplomarbeit " Der M-Bus - Eigenschaften und Anwendungen",

University of Paderborn, Department of Physics, 1992

[4] Texas Instruments Deutschland GmbH : Data Sheet TSS 721, 1993

[5] Texas Instruments Deutschland GmbH : Seminar Material, M-Bus Workshop, 1992

[6] Ziegler, Horst : Seminar Material, M-Bus Workshop, 1992

[7] IEC 870-5-1 : Telecontrol Equipment and Systems, Part 5 Transmission Protocols,

Section One - Transmission Frame Formats, 1990

[8] IEC 870-5-2 : Telecontrol Equipment and Systems, Part 5 Transmission Protocols,

Section Two - Link Transmission Procedures, 1992

[9] EN1434-3: Heat Meters, Part 3 Data Exchange and Interface, 1997 ♣

[10] Aquametro AG Therwil : M-Bus Automatic Slave Recognition with Wildcard

Algorithm, 1992

[11] Papenheim, Andreas: Diplomarbeit " Anwendungsbeispiele für den M-Bus",

University of Paderborn, Department of Physics, 1993

[12] Texas Instruments Deutschland GmbH: Applications Report "Designing Applications

for the Meter-Bus", 1994 (translation of reference [11])

[13] Ziegler, Horst; Froschermeier Günther: "M-Bus: Die Meßbus-Alternative", Elektronik

16/1993

